243
Views
39
CrossRef citations to date
0
Altmetric
Review

Optimizing efficacy of mucosal vaccines

, , , &
Pages 1139-1155 | Published online: 09 Jan 2014

References

  • Mann JF, Acevedo R, Campo JD, Pérez O, Ferro VA. Delivery systems: a vaccine strategy for overcoming mucosal tolerance? Expert Rev. Vaccines 8(1), 103–112 (2009).
  • Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25(30), 5467–5484 (2007).
  • Cerutti A, Chen K, Chorny A. Immunoglobulin responses at the mucosal interface. Annu. Rev. Immunol. 29, 273–293 (2011).
  • Moens E, Veldhoen M. Epithelial barrier biology: good fences make good neighbours. Immunology 135(1), 1–8 (2012).
  • Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol. Cancer 10, 3 (2011).
  • Ferro VA, Garside DA. Reproductive component vaccine developments for contraceptive and non-contraceptive uses. Expert Opin. Ther. Pat. 21(9), 1473–1482 (2011).
  • Takaiwa F. Allergen-specific immunotherapy with plant-based oral vaccines. Immunotherapy 1(4), 517–519 (2009).
  • Dwivedy A, Aich P. Importance of innate mucosal immunity and the promises it holds. Int. J. Gen. Med. 4, 299–311 (2011).
  • Chen K, Cerutti A. Vaccination strategies to promote mucosal antibody responses. Immunity 33(4), 479–491 (2010).
  • Fujkuyama Y, Tokuhara D, Kataoka K et al. Novel vaccine development strategies for inducing mucosal immunity. Expert Rev. Vaccines 11(3), 367–379 (2012).
  • Soloff AC, Barratt-Boyes SM. Enemy at the gates: dendritic cells and immunity to mucosal pathogens. Cell Res. 20(8), 872–885 (2010).
  • Moore KL, Dalley AF, Agur AMR. Clinically Oriented Anatomy. Wolters Kluwer/Lippincott Williams & Wilkins, PA, USA (2010).
  • Yu M, Vajdy M. Mucosal HIV transmission and vaccination strategies through oral compared with vaginal and rectal routes. Expert Opin. Biol. Ther. 10(8), 1181–1195 (2010).
  • Pope M. Mucosal dendritic cells and immunodeficiency viruses. J. Infect. Dis. 179(Suppl. 3), S427–S430 (1999).
  • Challacombe SJ, Naglik JR. The effects of HIV infection on oral mucosal immunity. Adv. Dent. Res. 19(1), 29–35 (2006).
  • Brandtzaeg P. Immune functions of nasopharyngeal lymphoid tissue. Adv. Otorhinolaryngol. 72, 20–24 (2011).
  • Garg S, Danodia A, Dangi V, Dhakar R. Design of buccal adhesive drug delivery system: challenges and solutions. J. Drug Deliv. Therapeut. 1(2), 35–45 (2011).
  • Squier CA. The permeability of oral mucosa. Crit. Rev. Oral Biol. Med. 2(1), 13–32 (1991).
  • Song JH, Kim JI, Kwon HJ et al. CCR7-CCL19/CCL21-regulated dendritic cells are responsible for effectiveness of sublingual vaccination. J. Immunol. 182(11), 6851–6860 (2009).
  • Song JH, Nguyen HH, Cuburu N et al. Sublingual vaccination with influenza virus protects mice against lethal viral infection. Proc. Natl Acad. Sci. USA 105(5), 1644–1649 (2008).
  • Zhang T, Hashizume T, Kurita-Ochiai T, Yamamoto M. Sublingual vaccination with outer membrane protein of Porphyromonas gingivalis and Flt3 ligand elicits protective immunity in the oral cavity. Biochem. Biophys. Res. Commun. 390(3), 937–941 (2009).
  • Czerkinsky C, Cuburu N, Kweon MN, Anjuere F, Holmgren J. Sublingual vaccination. Hum. Vaccin. 7(1), 110–114 (2011).
  • Mishra N, Goyal AK, Tiwari S et al. Recent advances in mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymeric carriers. Expert Opin. Ther. Pat. 20(5), 661–679 (2010).
  • Russell MW. Biological functions of IgA. In: Mucosal Immune Defense: Immunoglobulin A. Kaetzel CS (Ed.). Springer, NY, USA 144–172 (2007).
  • Mason KL, Huffnagle GB, Noverr MC, Kao JY. Overview of gut immunology. In: GI Microbiota and Regulation of the Immune System. Huffnagle GB, Noverr MC (Eds). Springer, NY, USA 1–14 (2008).
  • Amerongen HM, Weltzin R, Farnet CM, Michetti P, Haseltine WA, Neutra MR. Transepithelial transport of HIV-1 by intestinal M cells: a mechanism for transmission of AIDS. J. Acquir. Immune Defic. Syndr. 4(8), 760–765 (1991).
  • Sicinski P, Rowinski J, Warchol JB et al. Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology 98(1), 56–58 (1990).
  • Wolf JL, Kauffman RS, Finberg R, Dambrauskas R, Fields BN, Trier JS. Determinants of reovirus interaction with the intestinal M cells and absorptive cells of murine intestine. Gastroenterology 85(2), 291–300 (1983).
  • Misumi S, Masuyama M, Takamune N et al. Targeted delivery of immunogen to primate m cells with tetragalloyl lysine dendrimer. J. Immunol. 182(10), 6061–6070 (2009).
  • Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2(4), 361–367 (2001).
  • Ryan EJ, Daly LM, Mills KH. Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol. 19(8), 293–304 (2001).
  • Schmucker DL. Efficacy of intraduodenal, oral and parenteral boosting in inducing intestinal mucosal immunity to cholera toxin in rats. Immunol. Invest. 28(5–6), 339–346 (1999).
  • Garside P, Millington O, Smith KM. The anatomy of mucosal immune responses. Ann. N Y Acad. Sci. 1029, 9–15 (2004).
  • Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3(4), 331–341 (2003).
  • Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4(9), 699–710 (2004).
  • Czerkinsky C, Holmgren J. Enteric vaccines for the developing world: a challenge for mucosal immunology. Mucosal Immunol. 2(4), 284–287 (2009).
  • Cone RA. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61(2), 75–85 (2009).
  • Masuet Aumatell C, Ramon Torrell JM, Zuckerman JN. Review of oral cholera vaccines: efficacy in young children. Infect. Drug Resist. 4, 155–160 (2011).
  • Ferro V. Adjuvants and vaccine delivery systems. In: Novel Approaches to Vaccine Research. Hefferon KL (Ed.). Research Signpost, Kerala, India, 199–222 (2011).
  • Davis SS. Nasal vaccines. Adv. Drug Deliv. Rev. 51(1–3), 21–42 (2001).
  • Csencsits KL, Jutila MA, Pascual DW. Nasal-associated lymphoid tissue: phenotypic and functional evidence for the primary role of peripheral node addressin in naive lymphocyte adhesion to high endothelial venules in a mucosal site. J. Immunol. 163(3), 1382–1389 (1999).
  • Hameleers DM, Stoop AE, van der Ven I, Biewenga J, van der Baan S, Sminia T. Intra-epithelial lymphocytes and non-lymphoid cells in the human nasal mucosa. Int. Arch. Allergy Appl. Immunol. 88(3), 317–322 (1989).
  • Kuper CF, Koornstra PJ, Hameleers DM et al. The role of nasopharyngeal lymphoid tissue. Immunol. Today 13(6), 219–224 (1992).
  • Zho F, Neutra MR. Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci. Rep. 22(2), 355–369 (2002).
  • Pabst R, Tschernig T. Bronchus-associated lymphoid tissue: an entry site for antigens for successful mucosal vaccinations? Am. J. Respir. Cell Mol. Biol. 43(2), 137–141 (2010).
  • Velasquez LS, Shira S, Berta AN et al. Intranasal delivery of Norwalk virus-like particles formulated in an in situ gelling, dry powder vaccine. Vaccine 29(32), 5221–5231 (2011).
  • Muttil P, Prego C, Garcia-Contreras L et al. Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS J. 12(3), 330–337 (2010).
  • Al-Hallak KM, Azarmi S, Anwar-Mohamed A, Roa WH, Löbenberg R. Secondary cytotoxicity mediated by alveolar macrophages: a contribution to the total efficacy of nanoparticles in lung cancer therapy? Eur. J. Pharm. Biopharm. 76(1), 112–119 (2010).
  • Nicod LP. Pulmonary defence mechanisms. Respiration. 66(1), 2–11 (1999).
  • Siekmeier R, Scheuch G. Systemic treatment by inhalation of macromolecules – principles, problems, and examples. J. Physiol. Pharmacol. 59(Suppl. 6), 53–79 (2008).
  • Taylor G, Kellaway I. Pulmonary drug delivery. In: Drug Delivery Targeting for Pharmacists and Pharmaceutical Scientists. Hillery AM, Lloyd AW, Swarbrick J (Eds). CRC Press, FL, USA, 269–300 (2001).
  • Carvalho TC, Peters JI, Williams RO 3rd. Influence of particle size on regional lung deposition–what evidence is there? Int. J. Pharm. 406(1–2), 1–10 (2011).
  • Amorij JP, Hinrichs WLj, Frijlink HW, Wilschut JC, Huckriede A. Needle-free influenza vaccination. Lancet Infect. Dis. 10(10), 699–711 (2010).
  • Meyer P, Menzel M, Muellinger B, Weber N, Haeussinger K, Ziegler-Heitbrock L. Inhalative vaccination with pneumococcal polysaccharide in patients with chronic obstructive pulmonary disease. Vaccine 24(31–32), 5832–5838 (2006).
  • Fernandez-De Castro J, Kumate-Rodriguez J, Sepulveda J et al . (Measles vaccination by the aerosol method in Mexico). Salud Publica Mex 39(1), 53–60 (1997).
  • Mestecky J, Moldoveanu Z, Russell MW. Immunologic uniqueness of the genital tract: challenge for vaccine development. Am. J. Reprod. Immunol. 53(5), 208–214 (2005).
  • Wira CR, Fahey JV, Sentman CL, Pioli PA, Shen L. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol. Rev. 206, 306–335 (2005).
  • Hickey DK, Patel MV, Fahey JV, Wira CR. Innate and adaptive immunity at mucosal surfaces of the female reproductive tract: stratification and integration of immune protection against the transmission of sexually transmitted infections. J. Reprod. Immunol. 88(2), 185–194 (2011).
  • Vajdy M. Structure of the respiratory and female genitourinary tracts. In: Immunity Against Mucosal Pathogens. Vajdy M (Ed.). Springer, Berlin, Germany, 23–29 (2008).
  • Iwasaki A. Antiviral immune responses in the genital tract: clues for vaccines. Nat. Rev. Immunol. 10(10), 699–711 (2010).
  • Ogra PL, Ogra SS. Local antibody response to poliovaccine in the human female genital tract. J. Immunol. 110(5), 1307–1311 (1973).
  • Wira CR, Rossoll RM. Antigen-presenting cells in the female reproductive tract: influence of the estrous cycle on antigen presentation by uterine epithelial and stromal cells. Endocrinology 136(10), 4526–4534 (1995).
  • Prabhala RH, Wira CR. Sex hormone and IL-6 regulation of antigen presentation in the female reproductive tract mucosal tissues. J. Immunol. 155(12), 5566–5573 (1995).
  • Fahey JV, Prabhala RH, Guyre PM, Wira CR. Antigen-presenting cells in the human female reproductive tract: analysis of antigen presentation in pre- and post-menopausal women. Am. J. Reprod. Immunol. 42(1), 49–57 (1999).
  • Wallace PK, Yeaman GR, Johnson K, Collins JE, Guyre PM, Wira CR. MHC class II expression and antigen presentation by human endometrial cells. J. Steroid Biochem. Mol. Biol. 76(1–5), 203–211 (2001).
  • Kaushic C, Frauendorf E, Wira C. Polymeric Immunoglobulin Receptor is synthesized locally in the rodent vagina and under the control of sex hormones. Faseb J 10(6), 911 (1996).
  • Wira CR, Rossoll RM. Oestradiol regulation of antigen presentation by uterine stromal cells: role of transforming growth factor-β production by epithelial cells in mediating antigen-presenting cell function. Immunology 109(3), 398–406 (2003).
  • Kozlowski PA, Williams SB, Lynch RM et al. Differential induction of mucosal and systemic antibody responses in women after nasal, rectal, or vaginal immunization: influence of the menstrual cycle. J. Immunol. 169(1), 566–574 (2002).
  • Decrausaz L, Domingos-Pereira S, Duc M et al. Parenteral is more efficient than mucosal immunization to induce regression of human papillomavirus-associated genital tumors. Int. J. Cancer 129(3), 762–772 (2011).
  • Squier CA, Mantz MJ, Schlievert PM, Davis CC. Porcine vagina ex vivo as a model for studying permeability and pathogenesis in mucosa. J. Pharm. Sci. 97(1), 9–21 (2008).
  • Moldoveanu Z, Huang WQ, Kulhavy R, Pate MS, Mestecky J. Human male genital tract secretions: both mucosal and systemic immune compartments contribute to the humoral immunity. J. Immunol. 175(6), 4127–4136 (2005).
  • Czerkinsky C, Holmgren J. Topical immunization strategies. Mucosal Immunol. 3(6), 545–555 (2010).
  • Pasetti MF, Simon JK, Sztein MB, Levine MM. Immunology of gut mucosal vaccines. Immunol. Rev. 239(1), 125–148 (2011).
  • Brandtzaeg P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol. Invest. 39(4–5), 303–355 (2010).
  • Czerkinsky C, Holmgren J. Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr. Top. Microbiol. Immunol. 354, 1–18 (2012).
  • Ferro VA, Khan MA, McAdam D et al. Efficacy of an anti-fertility vaccine based on mammalian gonadotrophin releasing hormone (GnRH-I) – a histological comparison in male animals. Vet. Immunol. Immunopathol. 101(1–2), 73–86 (2004).
  • Johansson EL, Wassén L, Holmgren J, Jertborn M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect. Immun. 69(12), 7481–7486 (2001).
  • Ogra PL. Ageing and its possible impact on mucosal immune responses. Ageing Res. Rev. 9(2), 101–106 (2010).
  • Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21(4), 317–337 (2009).
  • Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6(1), 10–21 (2009).
  • Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol. 30(1), 23–32 (2009).
  • Baldridge JR, Yorgensen Y, Ward JR, Ulrich JT. Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 18(22), 2416–2425 (2000).
  • Chabot S, Brewer A, Lowell G et al. A novel intranasal Protollin-based measles vaccine induces mucosal and systemic neutralizing antibody responses and cell-mediated immunity in mice. Vaccine 23(11), 1374–1383 (2005).
  • Jones T, Cyr S, Allard F, Bellerose N, Lowell GH, Burt DS. Protollin: a novel adjuvant for intranasal vaccines. Vaccine 22(27–28), 3691–3697 (2004).
  • Haneberg B, Dalseg R, Wedege E et al. Intranasal administration of a meningococcal outer membrane vesicle vaccine induces persistent local mucosal antibodies and serum antibodies with strong bactericidal activity in humans. Infect. Immun. 66(4), 1334–1341 (1998).
  • Campo JD, Zayas C, Romeu B et al. Mucosal immunization using proteoliposome and cochleate structures from Neisseria meningitidis serogroup B induce mucosal and systemic responses. Methods 49(4), 301–308 (2009).
  • Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20, 709–760 (2002).
  • Holmgren J, Adamsson J, Anjuère F et al. Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol. Lett. 97(2), 181–188 (2005).
  • Harandi AM, Eriksson K, Holmgren J. A protective role of locally administered immunostimulatory CpG oligodeoxynucleotide in a mouse model of genital herpes infection. J. Virol. 77(2), 953–962 (2003).
  • Shaw MH, Reimer T, Kim YG, Nuñez G. NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr. Opin. Immunol. 20(4), 377–382 (2008).
  • Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278(11), 8869–8872 (2003).
  • Chamaillard M, Hashimoto M, Horie Y et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4(7), 702–707 (2003).
  • Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Adjuvant synergy: the effects of nasal coadministration of adjuvants. Immunol. Cell Biol. 82(6), 628–637 (2004).
  • Coulombe F, Divangahi M, Veyrier F et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med. 206(8), 1709–1716 (2009).
  • Faisal SM, Yan W, McDonough SP, Mohammed HO, Divers TJ, Chang YF. Immune response and prophylactic efficacy of smegmosomes in a hamster model of leptospirosis. Vaccine 27(44), 6129–6136 (2009).
  • Faisal SM, Chen JW, McDonough SP, Chang CF, Teng CH, Chang YF. Immunostimulatory and antigen delivery properties of liposomes made up of total polar lipids from non-pathogenic bacteria leads to efficient induction of both innate and adaptive immune responses. Vaccine 29(13), 2381–2391 (2011).
  • Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol. 19(9), 455–464 (2009).
  • Ting JP, Willingham SB, Bergstralh DT. NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 8(5), 372–379 (2008).
  • Franchi L, Amer A, Body-Malapel M et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7(6), 576–582 (2006).
  • Gentschev I, Spreng S, Sieber H et al. Vivotif – a ‘magic shield’ for protection against typhoid fever and delivery of heterologous antigens. Chemotherapy 53(3), 177–180 (2007).
  • Wang S, Li Y, Shi H et al. Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infect. Immun. 78(7), 3258–3271 (2010).
  • DiGiandomenico A, Rao J, Goldberg JB. Oral vaccination of BALB/c mice with Salmonella enterica serovar Typhimurium expressing Pseudomonas aeruginosa O antigen promotes increased survival in an acute fatal pneumonia model. Infect. Immun. 72(12), 7012–7021 (2004).
  • Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122(5), 669–682 (2005).
  • Xu W, He B, Chiu A et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI. Nat. Immunol. 8(3), 294–303 (2007).
  • Hasegawa H, Ichinohe T, Ainai A, Tamura S, Kurata T. Development of mucosal adjuvants for intranasal vaccine for H5N1 influenza viruses. Ther. Clin. Risk Manag. 5(1), 125–132 (2009).
  • Stevceva L, Ferrari MG. Mucosal adjuvants. Curr. Pharm. Des. 11(6), 801–811 (2005).
  • Lillard JW Jr, Boyaka PN, Taub DD, McGhee JR. RANTES potentiates antigen-specific mucosal immune responses. J. Immunol. 166(1), 162–169 (2001).
  • Boyaka PN, Marinaro M, Jackson RJ et al. IL-12 is an effective adjuvant for induction of mucosal immunity. J. Immunol. 162(1), 122–128 (1999).
  • Baglioni C, Phipps RJ. Nasal absorption of interferon: enhancement by surfactant agents. J. Interferon Res. 10(5), 497–504 (1990).
  • Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet. Res. 37(3), 511–539 (2006).
  • Libanova R, Becker PD, Guzmán CA. Cyclic di-nucleotides: new era for small molecules as adjuvants. Microb. Biotechnol. 5(2), 168–176 (2012).
  • Ebensen T, Libanova R, Schulze K, Yevsa T, Morr M, Guzmán CA. Bis-(3´,5´)-cyclic dimeric adenosine monophosphate: strong Th1/Th2/Th17 promoting mucosal adjuvant. Vaccine 29(32), 5210–5220 (2011).
  • Gagliardi MC, De Magistris MT. Maturation of human dendritic cells induced by the adjuvant cholera toxin: role of cAMP on chemokine receptor expression. Vaccine 21(9–10), 856–861 (2003).
  • Eriksson K, Fredriksson M, Nordström I, Holmgren J. Cholera toxin and its B subunit promote dendritic cell vaccination with different influences on Th1 and Th2 development. Infect. Immun. 71(4), 1740–1747 (2003).
  • Gill DM, Rappaport RS. Origin of the enzymatically active A1 fragment of cholera toxin. J. Infect. Dis. 139(6), 674–680 (1979).
  • Yuki Y, Kiyono H. Mucosal vaccines: novel advances in technology and delivery. Expert Rev. Vaccines 8(8), 1083–1097 (2009).
  • van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol. 165(9), 4778–4782 (2000).
  • Mutsch M, Zhou W, Rhodes P et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N. Engl. J. Med. 350(9), 896–903 (2004).
  • Lewis DJ, Huo Z, Barnett S et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS ONE 4(9), e6999 (2009).
  • Rowhani-Rahbar A, Klein NP, Lewis N et al. Immunization and Bell’s palsy in children: a case-centered analysis. Am. J. Epidemiol. 175(9), 878–885 (2012).
  • Dietrich G, Griot-Wenk M, Metcalfe IC, Lang AB, Viret JF. Experience with registered mucosal vaccines. Vaccine 21(7–8), 678–683 (2003).
  • Adamsson J, Lindblad M, Lundqvist A, Kelly D, Holmgren J, Harandi AM. Novel immunostimulatory agent based on CpG oligodeoxynucleotide linked to the nontoxic B subunit of cholera toxin. J. Immunol. 176(8), 4902–4913 (2006).
  • Cho HJ, Kim JY, Lee Y et al. Enhanced humoral and cellular immune responses after sublingual immunization against human papillomavirus 16 L1 protein with adjuvants. Vaccine 28(14), 2598–2606 (2010).
  • Stephenson I, Zambon MC, Rudin A et al. Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants, using adult volunteers. J. Virol. 80(10), 4962–4970 (2006).
  • Hagiwara Y, Kawamura YI, Kataoka K et al. A second generation of double mutant cholera toxin adjuvants: enhanced immunity without intracellular trafficking. J. Immunol. 177(5), 3045–3054 (2006).
  • Bemark M, Bergqvist P, Stensson A, Holmberg A, Mattsson J, Lycke NY. A unique role of the cholera toxin A1-DD adjuvant for long-term plasma and memory B cell development. J. Immunol. 186(3), 1399–1410 (2011).
  • Hargreaves DC, Medzhitov R. Innate sensors of microbial infection. J. Clin. Immunol. 25(6), 503–510 (2005).
  • Ryll R, Kumazawa Y, Yano I. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids – a review. Microbiol. Immunol. 45(12), 801–811 (2001).
  • Werninghaus K, Babiak A, Gross O et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ-Syk-Card9-dependent innate immune activation. J. Exp. Med. 206(1), 89–97 (2009).
  • Christensen D, Foged C, Rosenkrands I et al. CAF01 liposomes as a mucosal vaccine adjuvant: In vitro and in vivo investigations. Int. J. Pharm. 390(1), 19–24 (2010).
  • Schoenen H, Bodendorfer B, Hitchens K et al. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J. Immunol. 184(6), 2756–2760 (2010).
  • Martín-Fontecha A, Thomsen LL, Brett S et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for T(H)1 priming. Nat. Immunol. 5(12), 1260–1265 (2004).
  • Burdin N, Brossay L, Koezuka Y et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates V α 14+ NK T lymphocytes. J. Immunol. 161(7), 3271–3281 (1998).
  • Lindqvist M, Persson J, Thörn K, Harandi AM. The mucosal adjuvant effect of α-galactosylceramide for induction of protective immunity to sexually transmitted viral infection. J. Immunol. 182(10), 6435–6443 (2009).
  • Tabata Y, Inoue Y, Ikada Y. Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine 14(17–18), 1677–1685 (1996).
  • Brewer JM, Pollock KG, Tetley L, Russell DG. Vesicle size influences the trafficking, processing, and presentation of antigens in lipid vesicles. J. Immunol. 173(10), 6143–6150 (2004).
  • Mann JF, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 27(27), 3643–3649 (2009).
  • Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm. Res. 27(5), 905–919 (2010).
  • Lu D, Garcia-Contreras L, Muttil P et al. Pulmonary immunization using antigen 85-B polymeric microparticles to boost tuberculosis immunity. AAPS J. 12(3), 338–347 (2010).
  • Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol. Pharm. 8(2), 405–415 (2011).
  • Yang F, Jin C, Jiang Y et al. Liposome based delivery systems in pancreatic cancer treatment: from bench to bedside. Cancer Treat. Rev. 37(8), 633–642 (2011).
  • Nordly P, Madsen HB, Nielsen HM, Foged C. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin. Drug Deliv. 6(7), 657–672 (2009).
  • Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 30(13), 2256–2272 (2012).
  • Romero EL, Morilla MJ. Topical and mucosal liposomes for vaccine delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3(4), 356–375 (2011).
  • Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIX. Vaccine 27(33), 4388–4401 (2009).
  • Christensen D, Korsholm KS, Andersen P, Agger EM. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines 10(4), 513–521 (2011).
  • Baillie AJ, Florence AT, Hume LR, Muirhead GT, Rogerson A. The preparation and properties of niosomes – non-ionic surfactant vesicles. J. Pharm. Pharmacol. 37(12), 863–868 (1985).
  • Alexander TF. Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discovery Today: Technologies 2(1), 75–81 (2005).
  • Atherly A, Florence C, Thorpe KE. Health plan switching among members of the Federal Employees Health Benefits Program. Inquiry 42(3), 255–265 (2005).
  • Marianecci C, Paolino D, Celia C, Fresta M, Carafa M, Alhaique F. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: characterization and interaction with human lung fibroblasts. J. Control. Release 147(1), 127–135 (2010).
  • Moazeni E, Gilani K, Sotoudegan F et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J. Microencapsul. 27(7), 618–627 (2010).
  • Ning M, Guo Y, Pan H, Yu H, Gu Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: studies in rats. Drug Deliv. 12(6), 399–407 (2005).
  • El-Ridy MS, Abdelbary A, Essam T, El-Salam RM, Kassem AA. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. Drug Dev. Ind. Pharm. 37(12), 1491–1508 (2011).
  • Singh P, Prabakaran D, Jain S, Mishra V, Jaganathan KS, Vyas SP. Cholera toxin B subunit conjugated bile salt stabilized vesicles (bilosomes) for oral immunization. Int. J. Pharm. 278(2), 379–390 (2004).
  • Mann JF, Scales HE, Shakir E et al. Oral delivery of tetanus toxoid using vesicles containing bile salts (bilosomes) induces significant systemic and mucosal immunity. Methods 38(2), 90–95 (2006).
  • Mann JF, Ferro VA, Mullen AB et al. Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine 22(19), 2425–2429 (2004).
  • Shukla A, Singh B, Katare OP. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br. J. Pharmacol. 164(2b), 820–827 (2011).
  • Shukla A, Katare OP, Singh B, Vyas SP. M-cell targeted delivery of recombinant hepatitis B surface antigen using cholera toxin B subunit conjugated bilosomes. Int. J. Pharm. 385(1–2), 47–52 (2010).
  • Zarif L. Elongated supramolecular assemblies in drug delivery. J. Control. Release 81(1–2), 7–23 (2002).
  • Pérez O, Bracho G, Lastre M et al. Novel adjuvant based on a proteoliposome-derived cochleate structure containing native lipopolysaccharide as a pathogen-associated molecular pattern. Immunol. Cell Biol. 82(6), 603–610 (2004).
  • Romeu B, González E, Del Campo J et al. Mucosal and systemic immune responses of mice to tetanus toxoid coadministered nasally with AFCo1. Can. J. Microbiol. 57(3), 256–261 (2011).
  • Del Campo J, Lindqvist M, Cuello M et al. Intranasal immunization with a proteoliposome-derived cochleate containing recombinant gD protein confers protective immunity against genital herpes in mice. Vaccine 28(5), 1193–1200 (2010).
  • Romeu B, González E, Zayas C et al. AFCo1 as nasal adjuvant of capsular polysaccharide from Neisseria meningitidis serogroup C induces systemic and mucosal immune responses. Scand. J. Infect. Dis. 43(10), 809–813 (2011).
  • Acevedo R, Callicó A, del Campo J et al. Intranasal administration of proteoliposome-derived cochleates from Vibrio cholerae O1 induce mucosal and systemic immune responses in mice. Methods 49(4), 309–315 (2009).
  • Acevedo R. Production and characterization of a new cochlear structure with adjuvant capacity derived from proteoliposomes from Vibrio cholerae O1. PhD thesis, The Finlay Institute, Havana, Cuba (2011).
  • Lo DD, Ling J, Eckelhoefer AH. M cell targeting by a Claudin 4 targeting peptide can enhance mucosal IgA responses. BMC Biotechnol. 12, 7 (2012).
  • Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 11(6), 748–764 (2011).
  • Scrivener CA, Schantz CW. Penicillin; new methods for its use in dentistry. J. Am. Dent. Assoc. 35(9), 644–647 (1947).
  • Han IK, Kim YB, Kang HS et al. Thermosensitive and mucoadhesive delivery systems of mucosal vaccines. Methods 38(2), 106–111 (2006).
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61(2), 158–171 (2009).
  • Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit. Rev. Ther. Drug Carrier Syst. 22(5), 419–464 (2005).
  • Woodley J. Bioadhesion: new possibilities for drug administration? Clin. Pharmacokinet. 40(2), 77–84 (2001).
  • Lang T, Hill AV, McShane H et al. New TB vaccine granted orphan drug status. BMJ 331(7530), 1476 (2005).
  • Serruto D, Bottomley MJ, Ram S, Giuliani MM, Rappuoli R. The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: immunological, functional and structural characterization of the antigens. Vaccine 30(Suppl. 2) B87–B97 (2012).
  • Pelosi A, Shepherd R, Walmsley AM. Delivery of plant-made vaccines and therapeutics. Biotechnol. Adv. 30(2), 440–448 (2012).
  • Amanna IJ, Raué HP, Slifka MK. Development of a new hydrogen peroxide-based vaccine platform. Nat. Med. 18(6), 974–979 (2012).
  • Montomoli E, Piccirella S, Khadang B, Mennitto E, Camerini R, De Rosa A. Current adjuvants and new perspectives in vaccine formulation. Expert Rev. Vaccines 10(7), 1053–1061 (2011).
  • Mythri G, Kavitha K, Rupesh Kumar M, Jagadeesh Singh Sd. Novel mucoadhesive polymers – a review. J. App. Pharm. Sci. 1(8), 37–42 (2011).
  • Sharma A, Jacob A, Tandon M, Kumar D. Orphan drug: development trends and strategies. J. Pharm. Bioallied Sci. 2(4), 290–299 (2010).

Website

  • EMEA. Guideline on adjuvants in vaccines. 2011(18/12/2011), EMEA/CPMP/VEG/17/03/v 15/Consultation (2004). www.emea.eu

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.