References

  • Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis. 2(9), e300 (2008).
  • WHO. First WHO report on neglected tropical diseases: working to overcome the impact of neglected tropical diseases. WHO, Geneva, Switzerland (2010).
  • Lee BY, Bacon KM, Connor DL, Willig AM, Bailey RR. The potential economic value of a Trypanosoma cruzi (Chagas disease) vaccine in Latin America. PLoS Negl. Trop. Dis. 4(12), e916 (2010).
  • Hotez PJ, Dumonteil E, Heffernan MJ, Bottazzi ME. Innovation for “the bottom 100 million”: eliminating neglected tropical diseases in the Americas through mass drug administration and new vaccines for hookworm and Chagas disease. Adv. Exp. Biol. Med. (2012) (In Press).
  • Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet 375(9723), 1388–1402 (2010).
  • Hotez PJ, Bottazzi ME, Dumonteil E et al. Texas and Mexico: sharing a legacy of poverty and neglected tropical diseases. PLoS Negl. Trop. Dis. 6(3), e1497 (2012).
  • Cruz-Reyes A, Pickering-López JM. Chagas disease in Mexico: an analysis of geographical distribution during the past 76 years – a review. Mem. Inst. Oswaldo Cruz 101(4), 345–354 (2006).
  • Ramos-Ligonio A, López-Monteon A, Guzmán-Gómez D, Rosales-Encina JL, Limón-Flores Y, Dumonteil E. Identification of a hyperendemic area for Trypanosoma cruzi infection in central Veracruz, Mexico. Am. J. Trop. Med. Hyg. 83(1), 164–170 (2010).
  • Bern C, Montgomery SP. An estimate of the burden of Chagas disease in the United States. Clin. Infect. Dis. 49(5), e52–e54 (2009).
  • Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas’ disease in the United States. Clin. Microbiol. Rev. 24(4), 655–681 (2011).
  • Hotez PJ. Neglected infections of poverty in the United States of America. PLoS Negl. Trop. Dis. 2, e279 (2008).
  • Hotez PJ, Gurwith M. Europe’s neglected infections of poverty. Int. J. Infect. Dis. 15(9), e611–e619 (2011).
  • Gascon J, Bern C, Pinazo MJ. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop. 115(1–2), 22–27 (2010).
  • Schmunis GA, Yadon ZE. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop. 115(1–2), 14–21 (2010).
  • Theiler RN, Rasmussen SA, Treadwell TA, Jamieson DJ. Emerging and zoonotic infections in women. Infect. Dis. Clin. North Am. 22(4), 755–72, vii (2008).
  • Siriano Lda R, Luquetti AO, Avelar JB, Marra NL, de Castro AM. Chagas disease: increased parasitemia during pregnancy detected by hemoculture. Am. J. Trop. Med. Hyg. 84(4), 569–574 (2011).
  • Pérez-López FR, Chedraui P. Chagas disease in pregnancy: a non-endemic problem in a globalized world. Arch. Gynecol. Obstet. 282(6), 595–599 (2010).
  • Buekens P, Almendares O, Carlier Y et al. Mother-to-child transmission of Chagas’ disease in North America: why don’t we do more? Matern. Child Health J. 12(3), 283–286 (2008).
  • Roca C, Pinazo MJ, Lopez-Chejade P et al. Chagas disease among the Latin American adult population attending in a primary care center in Barcelona. PLoS Negl. Trop. Dis. 26, e1135 (2011).
  • Tarleton RL. Parasite persistence in the aetiology of Chagas disease. Int. J. Parasitol. 31(5–6), 550–554 (2001).
  • Plessman Camargo E. Perspectives of vaccination in Chagas disease revisited. Mem. Inst. Oswaldo Cruz 104 (Suppl. 1), 275–280 (2009).
  • Lescure FX, Le Loup G, Freilij H et al. Chagas disease: changes in knowledge and management. Lancet Infect. Dis. 10(8), 556–570 (2010).
  • Bern C. Antitrypanosomal therapy for chronic Chagas’ disease. N. Engl. J. Med. 364(26), 2527–2534 (2011).
  • Pérez-Molina JA, Pérez-Ayala A, Moreno S, Fernández-González MC, Zamora J, López-Velez R. Use of benznidazole to treat chronic Chagas’ disease: a systematic review with a meta-analysis. J. Antimicrob. Chemother. 64(6), 1139–1147 (2009).
  • Marin-Neto, Rassi A Jr, Morillo CA et al, on behalf of BENEFIT Investigators. Rationale and design of a randomized placebo-controlled trial assessing the effects of etiologic treatment in Chagas cardiomyopathy: the Benznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT). Am. Heart J. 156, 37–43 (2008).
  • Sarli Issa V, Alcides Bocchi E. Antitrypanosomal agents: treatment or threat? Lancet 376, 768–769 (2010).
  • Pinazo MJ, Muñoz J, Posada E et al. Tolerance of benznidazole in treatment of Chagas’ disease in adults. Antimicrob. Agents Chemother. 54(11), 4896–4899 (2010).
  • Viotti R, Vigliano C, Lococo B et al. Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev. Anti. Infect. Ther. 7(2), 157–163 (2009).
  • Castillo-Riquelme M, Guhl F, Turriago B et al. The costs of preventing and treating chagas disease in Colombia. PLoS Negl. Trop. Dis. 2(11), e336 (2008).
  • Vallejo M, Montenegro P, Reyes PA. How much does the medical treatment of chronic Chagas cardiopathy cost? Direct costs in a cardiology hospital. Arch. Cardiol. Mex. 72(2), 129–137 (2002).
  • Apt W. Current and developing therapeutic agents in the treatment of Chagas disease. Drug Des. Devel. Ther. 4, 243–253 (2010).
  • Buckner FS, Navabi N. Advances in Chagas disease drug development: 2009–2010. Curr. Opin. Infect. Dis. 23(6), 609–616 (2010).
  • Hotez PJ, Dumonteil E, Woc-Colburn L et al. Chagas disease: ‘The New HIV/AIDS of the Americas’. PLoS Negl. Trop. Dis. 6(5), e1498 (2012).
  • Cazorla SI, Frank FM, Malchiodi EL. Vaccination approaches against Trypanosoma cruzi infection. Expert Rev. Vaccines 8(7), 921–935 (2009).
  • Vázquez-Chagoyán JC, Gupta S, Garg NJ. Vaccine development against Trypanosoma cruzi and Chagas disease. Adv. Parasitol. 75, 121–146 (2011).
  • Quijano-Hernandez I, Dumonteil E. Advances and challenges towards a vaccine against Chagas disease. Hum. Vaccin. 7(11), 1184–1191 (2011).
  • Lee BY, Bacon KM, Wateska AR et al. Modeling the economic value of a Chagas’ disease therapeutic vaccine. Hum. Vaccines Immunther. 8(9), 1293–1301 (2012).
  • Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect. Immun. 72(1), 46–53 (2004).
  • Zapata-Estrella H, Hummel-Newell C, Sanchez-Burgos G et al. Control of Trypanosoma cruzi infection and changes in T-cell populations induced by a therapeutic DNA vaccine in mice. Immunol. Lett. 103(2), 186–191 (2006).
  • Sanchez-Burgos G, Mezquita-Vega RG, Escobedo-Ortegon J et al. Comparative evaluation of therapeutic DNA vaccines against Trypanosoma cruzi in mice. FEMS Immunol. Med. Microbiol. 50(3), 333–341 (2007).
  • Dumonteil E. DNA vaccines against protozoan-parasites: advances and challenges. J. Biomed. Biotechnol. 2007, 90520 (2007).
  • Quijano-Hernandez IA, Bolio-González ME, Rodríguez-Buenfil JC, Ramirez-Sierra MJ, Dumonteil E. Therapeutic DNA vaccine against Trypanosoma cruzi infection in dogs. Ann. NY Acad. Sci. 1149, 343–346 (2008).
  • Dumonteil E. Vaccine development against Trypanosoma cruzi and Leishmania species in the post-genomic era. Infect. Genet. Evol. 9(6), 1075–1082 (2009).
  • Limon-Flores AY, Cervera-Cetina R, Tzec-Arjona JL et al. Effect of a combination DNA vaccine for the prevention and therapy of Trypanosoma cruzi infection in mice: role of CD4+ and CD8+ T cells. Vaccine 28(46), 7414–7419 (2010).
  • Ishizaka ST, Hawkins LD. E6020: a synthetic Toll-like receptor 4 agonist as a vaccine adjuvant. Expert Rev. Vaccines 6(5), 773–784 (2007).
  • Baudner BC, Ronconi V, Casini D et al. MF59 emulsion is an effective delivery system for a synthetic TLR4 agonist (E6020). Pharm. Res. 26(6), 1477–1485 (2009).
  • Wizel B, Garg N, Tarleton RL. Vaccination with trypomastigote surface antigen 1-encoding plasmid DNA confers protection against lethal Trypanosoma cruzi infection. Infect. Immun. 66(11), 5073–5081 (1998).
  • Garg N, Tarleton RL. Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infect. Immun. 70(10), 5547–5555 (2002).
  • Gupta S, Garg NJ. Prophylactic efficacy of TcVac2 against Trypanosoma cruzi in mice. PLoS Negl. Trop. Dis. 4(8), e797 (2010).
  • Aparicio-Burgos JE, Ochoa-García L, Zepeda-Escobar JA et al. Testing the efficacy of a multi-component DNA-prime/DNA-boost vaccine against Trypanosoma cruzi infection in dogs. PLoS Negl. Trop. Dis. 5(5), e1050 (2011).
  • Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: current progress. Clin. Infect. Dis. 53(3), 296–302 (2011).
  • O’Hagan DT, De Gregorio E. The path to a successful vaccine adjuvant – ‘the long and winding road’. Drug Discov. Today 14(11–12), 541–551 (2009).
  • Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 9(9), 1095–1107 (2010).
  • Heffernan MJ, Kasturi SP, Yang SC, Pulendran B, Murthy N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid). Biomaterials 30(5), 910–918 (2009).
  • Heffernan MJ, Zaharoff DA, Fallon JK, Schlom J, Greiner JW. In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials 32(3), 926–932 (2011).
  • Rollier CS, Reyes-Sandoval A, Cottingham MG, Ewer K, Hill AV. Viral vectors as vaccine platforms: deployment in sight. Curr. Opin. Immunol. 23(3), 377–382 (2011).
  • Cavenaugh JS, Awi D, Mendy M, Hill AV, Whittle H, McConkey SJ. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS ONE 6(2), e14626 (2011).
  • Hill AV, Reyes-Sandoval A, O’Hara G et al. Prime-boost vectored malaria vaccines: progress and prospects. Hum. Vaccin. 6(1), 78–83 (2010).
  • Hotez P. A handful of ‘antipoverty’ vaccines exist for neglected diseases, but the world’s poorest billion people need more. Health Aff. (Millwood) 30(6), 1080–1087 (2011).
  • Lieke T, Graefe SE, Klauenberg U, Fleischer B, Jacobs T. NK cells contribute to the control of Trypanosoma cruzi infection by killing free parasites by perforin-independent mechanisms. Infect. Immun. 72(12), 6817–6825 (2004).
  • Lieke T, Steeg C, Graefe SE, Fleischer B, Jacobs T. Interaction of natural killer cells with Trypanosoma cruzi-infected fibroblasts. Clin. Exp. Immunol. 145(2), 357–364 (2006).
  • Jacobs T, Erdmann H, Fleischer B. Molecular interaction of Siglecs (sialic acid-binding Ig-like lectins) with sialylated ligands on Trypanosoma cruzi. Eur. J. Cell Biol. 89(1), 113–116 (2010).
  • Maddux NR, Joshi SB, Volkin DB, Ralston JP, Middaugh CR. Multidimensional methods for the formulation of biopharmaceuticals and vaccines. J. Pharm. Sci. doi:10.1002/jps.22618 (2011) (Epub ahead of print).
  • Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of chronic Chagas heart disease. Circulation 115(9), 1109–1123 (2007).
  • Gutierrez FR, Guedes PM, Gazzinelli RT, Silva JS. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol. 31(11), 673–685 (2009).
  • Machado FS, Tyler KM, Brant F, Esper L, Teixeira MM, Tanowitz HB. Pathogenesis of Chagas disease: time to move on. Front. Biosci. (Elite Ed.) 4, 1743–1758 (2012).
  • Zabalgoitia M, Ventura J, Anderson L, Williams JT, Carey KD, Vandeberg JL. Electrocardiographic findings in naturally acquired chagasic heart disease in nonhuman primates. J. Electrocardiol. 36(2), 155–160 (2003).
  • Zabalgoitia M, Ventura J, Anderson L, Carey KD, Williams JT, Vandeberg JL. Morphologic and functional characterization of Chagasic heart disease in non-human primates. Am. J. Trop. Med. Hyg. 68(2), 248–252 (2003).
  • Ramírez JD, Guhl F, Rendón LM, Rosas F, Marin-Neto JA, Morillo CA. Chagas cardiomyopathy manifestations and Trypanosoma cruzi genotypes circulating in chronic Chagasic patients. PLoS Negl. Trop. Dis. 4(11), e899 (2010).
  • Garcia-Alvarez A, Sitges M, Pinazo MJ et al. Chagas cardiomyopathy: the potential of diastolic dysfunction and brain natriuretic peptide in the early identification of cardiac damage. PLoS Negl. Trop. Dis. 4(9), e826 (2010).
  • Ndao M, Spithill TW, Caffrey R et al. Identification of novel diagnostic serum biomarkers for Chagas’ disease in asymptomatic subjects by mass spectrometric profiling. J. Clin. Microbiol. 48(4), 1139–1149 (2010).
  • Saravia SG, Haberland A, Bartel S et al. Cardiac troponin T measured with a highly sensitive assay for diagnosis and monitoring of heart injury in chronic Chagas disease. Arch. Pathol. Lab. Med. 135(2), 243–248 (2011).
  • Laucella SA, Mazliah DP, Bertocchi G et al. Changes in Trypanosoma cruzi-specific immune responses after treatment: surrogate markers of treatment efficacy. Clin. Infect. Dis. 49(11), 1675–1684 (2009).
  • Lorena VM, Lorena IM, Braz SC et al. Cytokine levels in serious cardiopathy of Chagas disease after in vitro stimulation with recombinant antigens from Trypanosoma cruzi. Scand. J. Immunol. 72(6), 529–539 (2010).
  • Wen JJ, Zago MP, Nunez S, Gupta S, Nunez Burgos F, Garg NJ. Serum proteomic signature of human chagasic patients for the identification of novel protein biomarkers of disease. Mol. Cell. Proteomics doi:10.1074/mcp.M112.017640 (2012) (Epub ahead of print).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.