680
Views
0
CrossRef citations to date
0
Altmetric
Review

Technology advancements in antibody purification

, &
Pages 17-32 | Published online: 26 Aug 2016

References

  • Thommes J, Etzel M. Alternatives to chromatographic separations. Biotechnol Prog. 2007;23:42–45.
  • Lund LN, Gustavsson PE, Michael R, et al. Novel peptide ligand with high binding capacity for antibody purification. J Chromatogr A. 2012;1225:158–167.
  • Li R, Dowd V, Stewart DJ, Burton SJ, Lowe CR. Design, synthesis, and application of a Protein A mimetic. Nat Biotechnol. 1998; 16:190–195.
  • Wang RZ, Lin DQ, Tong HF, Lu HL, Yao SJ. Evaluation of mixed-mode chromatographic resins for separating IgG from serum albumin containing feedstock. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;936:33–41.
  • Nilvebrant J, Alm T, Hober S. Orthogonal protein purification facilitated by a small bispecific affinity tag. J Vis Exp. 2012;59:e3370:1–6.
  • Muller-Spath T, Ströhlein G, Aumann L, et al. Model simulation and experimental verification of a cation-exchange IgG capture step in batch and continuous chromatography. J Chromatogr A. 2011;1218:5195–5204.
  • Feige M, Gräwert MA, Marcinowski M, et al. The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proc Natl Acad Sci U S A. 2014;111:8155–8160.
  • Arora S, Ayyar BV, O’Kennedy R. Affinity chromatography for antibody purification. Methods Mol Biol. 2014;1129:497–516.
  • Ayyar BV, Arora S, Murphy C, O’Kennedy R. Affinity chromatography as a tool for antibody purification. Methods. 2012;56:116–129.
  • Liu HF, Ma J, Winter C, Bayer R. Recovery and purification process development for monoclonal antibody production. MAbs. 2010;2:480–499.
  • Graille M, Stura EA, Housden NG, et al. Complex between Peptostreptococcus magnus protein L and a human antibody reveals structural convergence in the interaction modes of Fab binding proteins. Structure. 2001;9:679–687.
  • Grover RK, Zhu X, Nieusma T, et al. A structurally distinct human mycoplasma protein that generically blocks antigen-antibody union. Science. 2014;343:656–661.
  • Kato K, Lian LY, Barsukov IL, et al. Model for the complex between protein G and an antibody Fc fragment in solution. Structure. 1995;3:79–85.
  • Shukla AA, Gupta P, Han X. Protein aggregation kinetics during protein A chromatography. Case study for an Fc fusion protein. J Chromatogr A. 2007;1171:22–28.
  • Starovasnik MA, O’Connell MP, Fairbrother WJ, Kelley RF. Antibody variable region binding by Staphylococcal protein A: thermodynamic analysis and location of the Fv binding site on E-domain. Protein Sci. 1999;8:1423–1431.
  • Deisenhofer J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry. 1981;20:2361–2370.
  • Graille M, Stura EA, Corper AL, et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A. 2000;97:5399–5404.
  • Xu X, Didio DM, Leister KJ, Ghose S. Disaggregation of high-molecular weight species during downstream processing to recover functional monomer. Biotechnol Prog. 2010;26:717–726.
  • Fuglistaller P. Comparison of immunoglobulin binding capacities and ligand leakage using eight different protein A affinity chromatography matrices. J Immunol Methods. 1989;124:171–177.
  • Vijayalakshmi MA. Pseudobiospecific ligand affinity chromatography. Trends Biotechnol. 1989;7:71–76.
  • Nicoud L, Arosio P, Sozo M, Yates A, Norrant E, Morbidelli M. Kinetic analysis of the multistep aggregation mechanism of monoclonal antibodies. J Phys Chem B. 2014;118:10595–10606.
  • McCaw TR, Koepf EK, Conley L. Evaluation of a novel methacrylate-based protein a resin for the purification of immunoglobulins and Fc-fusion proteins. Biotechnol Prog. 2014;30:1125–1136.
  • Angarita M, Müller-Späth T, Baur D, Lievrouw R, Lissens G, Morbidelli M. Twin-column CaptureSMB: a novel cyclic process for protein A affinity chromatography. J Chromatogr A. 2015;1389:85–95.
  • Subramanian G. Continuous Processing in Pharmaceutical Manufacturing. Illustrated edition. Vol 232. Hoboken, NJ: John Wiley & Sons; 2015.
  • Pina AS, Lowe CR, Roque AC. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv. 2014;32:366–381.
  • Arnau J, Lauritzen C, Petersen GE, Pedersen J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif. 2006;48:1–13.
  • Walls D, Loughran ST. Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol. 2011;681:151–175.
  • Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J. 2012;7:620–634.
  • Liu F, Tsai SL, Madan B, Chen W. Engineering a high-affinity scaffold for non-chromatographic protein purification via intein-mediated cleavage. Biotechnol Bioeng. 2012;109:2829–2835.
  • Fong BA, Wu WY, Wood DW. The potential role of self-cleaving purification tags in commercial-scale processes. Trends Biotechnol. 2010;28:272–279.
  • Boyer TD. The glutathione S-transferases: an update. Hepatology. 1989;9:486–496.
  • Kimple ME, Brill AL, Pasker RL. Overview of affinity tags for protein purification. Curr Protoc Protein Sci. 2013;73:Unit-9.9.
  • Frangioni JV, Neel BG. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem. 1993;210:179–187.
  • Hedhammar M, Gräslund T, Hober S. Protein engineering strategies for selective protein purification. Chem Eng Technol. 2005;28:1315–1325.
  • Roush DJ, Lu Y. Advances in primary recovery: centrifugation and membrane technology. Biotechnol Prog. 2008;24:488–495.
  • van Reis R. Charged filtration membranes and uses therefor. United States patent. 2006. Patent no. US 7001550.
  • Ghosh R, Wang L. Purification of humanized monoclonal antibody by hydrophobic interaction membrane chromatography. J Chromatogr A. 2006;1107:104–109.
  • Sadavarte R, Spearman M, Okun N, Butler M, Ghosh R. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography. Biotechnol Bioeng. 2014;111:1139–1149.
  • Gagnon P. Purification Tools for Monoclonal Antibodies. 1st ed. Vol 254. Tucson, AZ: Validated Biosystems, Inc; 1996.
  • Geise G, Myroid A, Gorrell J, Persson, J. Purification of antibodies by precipitating impurities using Polyethylene Glycol to enable a two chromatography step process. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;1;938:14–2.
  • Smejkal B, Agrawal NJ, Helk B, et al. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Biotechnol Bioeng. 2013;110:2452–2461.
  • Etzel MR. Bulk protein crystallization – principles and methods. Biotechnol Bioproc Ser. 2007;31:159–178.
  • Mahajan E, George A, Wolk B. Improving affinity chromatography resin efficiency using semi-continuous chromatography. J Chromatogr A. 2012;1227:154–162.
  • Bailey LJ, Sheehy KM, Hoey RJ, Schaefer ZP, Ura M, Kossiakoff AA. Applications for an engineered Protein-G variant with a pH controllable affinity to antibody fragments. J Immunol Methods. 2014;415:24–30.
  • Pollock J, Bolton G, Coffman J, Ho SV, Bracewell DG, Farid SS. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture. J Chromatogr A. 2013;1284:17–27.
  • Pabst TM, Palmgren R, Forss A, et al. Engineering of novel Staphylococcal Protein A ligands to enable milder elution pH and high dynamic binding capacity. J Chromatogr A. 2014;1362:180–185.
  • Einhauer A, Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods. 2001;49:455–465.
  • Zhang L, Hernan R, Brizzard B. Multiple tandem epitope tagging for enhanced detection of protein expressed in mammalian cells. Mol Biotechnol. 2001;19:313–321.
  • Li Y. Self-cleaving fusion tags for recombinant protein production. Biotechnol Lett. 2011;33:869–881.
  • Thompson SA, Wang LL, West A, Sparling PF. Neisseria meningitidis produces iron-regulated proteins related to the RTX family of exoproteins. J Bacteriol. 1993;175:811–818.
  • Osicka R, Procházková K, Sulc M, Linhartová I, Havlícek V, Sebo P. A novel “clip-and-link” activity of repeat in toxin (RTX) proteins from gram-negative pathogens. Covalent protein cross-linking by an Asp-Lys isopeptide bond upon calcium-dependent processing at an Asp-Pro bond. J Biol Chem. 2004;279:24944–24956.
  • Chen J, Tetrault J, Ley A. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. J Chromatogr A. 2008;1177:272–281.
  • Wu SL, Figueroa A, Karger BL. Protein conformational effects in hydrophobic interaction chromatography. Retention characterization and the role of mobile phase additives and stationary phase hydrophobicity. J Chromatogr. 1986;371:3–27.
  • Ueberbacher R, Haimer E, Hahn R, Jungbauer A. Hydrophobic interaction chromatography of proteins V. Quantitative assessment of conformational changes. J Chromatogr A. 2008;1198–1199:154–163.
  • Burton SC, Harding DR. Hydrophobic charge induction chromatography: salt independent protein adsorption and facile elution with aqueous buffers. J Chromatogr A. 1998;814:71–81.
  • Cheng F, Li MY, Wang HQ, Lin DQ, Qu JP. Antibody–ligand interactions for hydrophobic charge-induction chromatography: a surface plasmon resonance study. Langmuir. 2015;31:3422–3430.
  • Multimodal or Mixed-Mode Chromatography. 2015. Available from: http://www.bio-rad.com/en-ie/applications-technologies/liquid-chromatography-principles/multimodal-or-mixed-mode-chromatography. Accessed March 31, 2016.
  • Lin DQ, Tong HF, Wang HY, Shao S, Yao SJ. Molecular mechanism of hydrophobic charge-induction chromatography: interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG. J Chromatogr A. 2012;1260:143–153.
  • Bresolin IT, de Souza MC, Bueno SM. A new process of IgG purification by negative chromatography: adsorption aspects of human serum proteins onto omega-aminodecyl-agarose. J Chromatogr B Analyt Technol Biomed Life Sci. 2010;878:2087–2093.
  • Tong HF, Lin DQ, Gao D, Yuan XM, Yao SJ. Caprylate as the albumin-selective modifier to improve IgG purification with hydrophobic charge-induction chromatography. J Chromatogr A. 2013;1285:88–96.
  • Maria S, Joucla G, Garbay B, et al. Purification process of recombinant monoclonal antibodies with mixed mode chromatography. J Chromatogr A. 2015;1393:57–64.
  • Wolfe LS, Barringer CP, Mostafa SS, Shukla AA. Multimodal chromatography: characterization of protein binding and selectivity enhancement through mobile phase modulators. J Chromatogr A. 2014;1340:151–156.
  • Bresolin IT, Bueno SM. Evaluation of amino acid O-phosphoserine as ligand for the capture of immunoglubulin G from human serum. Appl Biochem Biotechnol. 2012;167:632–644.
  • Yakup Arica M, Akin-Öktem G, Denizli A. Novel hydrophobic ligand-containing hydrogel membrane matrix: preparation and application to γ-globulins adsorption. Colloids Surf B Biointerfaces. 2001;21:273–283.
  • Arica MY, Yilmaz M, Yalçin E, Bayramogğlu G. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification. J Chromatogr B. 2004;805:315–323.
  • Bayramogğlu G, Senel AU, Arica MY. Adsorption of IgG on spacer-arm and L-arginine ligand attached poly(GMA/MMA/EGDMA) beads. J Appl Polym Sci. 2007;104:672–679.
  • Gan HY, Shang ZH, Wang JD. New affinity nylon membrane used for adsorption of γ-globulin. J Chromatogr A. 2000;867:161–168.
  • Türkmen D, Öztürk N, Akgöl S, Elkak A, Denizli A. Phenylalanine containing hydrophobic nanospheres for antibody purification. Biotechnol Prog. 2008;24:1297–1303.
  • GE Lifescience. Antibody Purification Handbook. Little Chalfont, UK: Amersham Pharmacia Biotech; 2015. Available from: http://proteins.gelifesciences.com/knowledge-library/protein-handbooks/. Accessed March 31, 2016.
  • Hou Y, Brower M, Pollard D, et al. Advective hydrogel membrane chromatography for monoclonal antibody purification in bioprocessing. Biotechnol Prog. 2015;31:974–982.
  • Hall T, Wilson JJ, Brownlee TJ, Swartling JR, Langan SE, Lambooy PK. Alkaline cation-exchange chromatography for the reduction of aggregate and a mis-formed disulfide variant in a bispecific antibody purification process. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;975:1–8.
  • Barroso T, Hussain A, Roque AC, Aguiar-Ricardo A. Functional monolithic platforms: chromatographic tools for antibody purification. Biotechnol J. 2013;8:671–681.
  • Iberer G, Hanh R, Jungbauer A, Majors RE. Stationary-phase technology in separation science. LC-GC Eur. 2000;13:88–93.
  • Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS. Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem. 2013;405:2133–2145.
  • Luo Q, Zou H, Zhang Q, Xiao X, Ni J. High-performance affinity chromatography with immobilization of protein A and L-histidine on molded monolith. Biotechnol Bioeng. 2002;80:481–489.
  • Feng S, Yang N, Pennathur S, Goodison S, Lubman DM. Enrichment of glycoproteins using nanoscale chelating concanavalin A monolithic capillary chromatography. Anal Chem. 2009;81:3776–3783.
  • Fitzgerald J, Leonard P, Darcy E, O’Kennedy RJ. In: Protein Chromatography. Vol 35–59. Berlin, Germany: Springer; 2011.
  • Moran KLM, Loftus JH, Murphy C., O’Kennedy R. Current and emerging technologies for the analysis of fungal and marine toxin contaminants in food. Submitted to book Nano-Inspired Biosensors for Improved Healthcare. Submitted for review, 2016.
  • McMahon MJ, O’Kennedy R. Polyreactivity as an acquired artefact, rather than a physiologic property, of antibodies: evidence that monoreactive antibodies may gain the ability to bind to multiple antigens after exposure to low pH. J Immunol Methods. 2000;241:1–10.
  • Hoogenboom HR. Overview of antibody phage-display technology and its applications. Methods Mol Biol. 2002;178:1–37.
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotech. 2005;23:1105–1116.
  • Kobatake E, Kosaku C, Hanzawa S, Mie M. Construction of affinity changeable antibody in response to Ca2+. Biotechnol Lett. 2012;34:1019–1023.
  • Liu Z, Gurgel PV, Carbonell RG. Affinity chromatographic purification of human immunoglobulin M from human B lymphocyte cell culture supernatant. Biochem Eng J. 2013;70:63–70.
  • Zhao WW, Shi QH, Sun Y. Dual-ligand affinity systems with octapeptide ligands for affinity chromatography of hIgG and monoclonal antibody. J Chromatogr A. 2014;1369:64–72.
  • Boi C, Dimartino S, Sarti GC. Performance of a new Protein A affinity membrane for the primary recovery of antibodies. Biotechnol Prog. 2008;24:640–647.
  • Roper DK, Lightfoot EN. Separation of biomolecules using adsorptive membranes. J Chromatogr A. 1995;702:3–26.
  • Ghosh R. Protein separation using membrane chromatography: opportunities and challenges. J Chromatogr A. 2002;952:13–27.
  • Boi C. Membrane adsorbers as purification tools for monoclonal antibody purification. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;848:19–27.
  • Luellau E, von Stockar U, Vogt S, Freitag R. Development of a downstream process for the isolation and separation of monoclonal immunoglobulin A monomers, dimers and polymers from cell culture supernatant. J Chromatogr A. 1998;796:165–175.
  • Yu S, Geng J, Zhou P, Wang J, Chen X, Hu J. New hydroxyapatite monolithic column for DNA extraction and its application in the purification of Bacillus subtilis crude lysate. J Chromatogr A. 2008;1183:29–37.
  • Hilbrig F, Freitag R. Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol J. 2012;7:90–102.
  • Gagnon P, Ng P, Zhen J, et al. A ceramic hydroxyapatite-based purification platform: Simultaneous removal of leached Protein A, aggregates, DNA and endotoxins from MABs. BioProcess Int. 2006;4:50–60.
  • Lan D, Huang G, Shao H, Zhang L, Ma L, Chen S. An improved non-chromatographic method for the purification of recombinant proteins using elastin-like polypeptide-tagged proteases. Anal Biochem. 2011;415:200–202.
  • Banki MR, Feng L, Wood DW. Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods. 2005;2:659–661.
  • Kostal J, Mulchandani A, Chen W. Tunable biopolymers for heavy metal removal. Macromolecules. 2001;34:2257–2261.
  • Shimazu M, Mulchandani A, Chen W. Thermally triggered purification and immobilization of elastin-OPH fusions. Biotechnol Bioeng. 2003;81:74–79.
  • Bayer EA, Belaich JP, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol. 2004;58:521–554.
  • Balasubramaniam D, Wilkinson C, Van Cott K, Zhang C. Tobacco protein separation by aqueous two-phase extraction. J Chromatogr A. 2003;989:119–129.
  • Asenjo JA, Andrews BA. Aqueous two-phase systems for protein separation: a perspective. J Chromatogr A. 2011;1218:8826–8835.
  • Asenjo JA, Andrews, BA. Aqueous two-phase systems for protein separation: phase separation and applications. J Chromatogr A. 2012;1238:1–10.
  • Mao LN, Rogers JK, Westoby M, Conley L, Pieracci J. Downstream antibody purification using aqueous two-phase extraction. Biotechnol Prog. 2010;26:1662–1670.
  • Platis D, Labrou NE. Application of a PEG/salt aqueous two-phase partition system for the recovery of monoclonal antibodies from unclarified transgenic tobacco extract. Biotechnol J. 2009;4:1320–1327.
  • Wu Q, Lin DQ, Zhang QL, Gao D, Yao SJ. Evaluation of a PEG/hydroxypropyl starch aqueous two-phase system for the separation of monoclonal antibodies from cell culture supernatant. J Sep Sci. 2014;37:447–453.
  • Cao H, Yuan M, Wang L, Yu J, Xu F. Coupling purification and in situ immobilization process of monoclonal antibodies to clenbuterol for immunosensor application. Anal Biochem. 2015;476:59–66.
  • Buyel JF, Fischer R. Flocculation increases the efficacy of depth filtration during the downstream processing of recombinant pharmaceutical proteins produced in tobacco. Plant Biotechnol J. 2014;12:240–252.
  • Laukel M, Rogge P, Dudziak G. Disposable downstream processing for clinical manufacturing. BioProcess Int. 2011;9:14–21.
  • Whitford WG. Single-use systems as principal components in bioproduction. BioProcess Int. 2010;8:34–44.
  • Buyel JF, Fischer R. Downstream processing of biopharmaceutical proteins produced in plants: the pros and cons of flocculants. Bioengineered. 2014;5:138–142.
  • Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci. 2011;169:1–12.
  • Zhou Y, Franks GV. Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir. 2006;22:6775–6786.
  • Kang YK, Hamzik J, Felo M, et al. Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Biotechnol Bioeng. 2013;110:2928–2937.
  • Singh N, Pizzelli K, Romero JK, et al. Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters. Biotechnol Bioeng. 2013;110:1964–1972.
  • Capito F, Skudas R, Stanislawski B, Kolmar H. Customization of copolymers to optimize selectivity and yield in polymer-driven antibody purification processes. Biotechnol Prog. 2013;29:1484–1493.
  • Jaoko WG, Lund M, Michael E, Simonsen PE. A simple and quick method for enhanced detection of specific IgE in serum from lymphatic filariasis patients. Acta Trop. 2001;80:51–57.