409
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification of GZMA as a Potential Therapeutic Target Involved in Immune Infiltration in Breast Cancer by Integrated Bioinformatical Analysis

ORCID Icon, ORCID Icon & ORCID Icon
Pages 213-226 | Received 08 Dec 2022, Accepted 18 Feb 2023, Published online: 10 Mar 2023

References

  • Chichiabellu TY, Mekonnen B, Astawesegn FH, Demissie BW, Anjulo AA. Essential newborn care practices and associated factors among home delivered mothers in Damot pulasa Woreda, southern Ethiopia. Reprod Health. 2018;15(1):162. doi:10.1186/s12978-018-0609-1
  • Huo Q, Li Z, Cheng L, Yang F, Xie N. SIRT7 is a prognostic biomarker associated with immune infiltration in luminal breast cancer. Front Oncol. 2020;10:621. doi:10.3389/fonc.2020.00621
  • Siegel RL, Miller KD, Jemal A. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(1). doi:10.3322/caac.21583
  • Huo Q, Chen S, Li Z, Wang J, Li J, Xie N. Inhibiting of TACC3 promotes cell proliferation, cell invasion and the EMT pathway in breast cancer. Front Genet. 2021;12:640078. doi:10.3389/fgene.2021.640078
  • Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–2465. doi:10.1056/NEJMoa1200694
  • Kalinski P, Talmadge JE. Tumor immuno-environment in cancer progression and therapy. Adv Exp Med Biol. 2017;1036:1–18. doi:10.1007/978-3-319-67577-0_1
  • Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–773. doi:10.7150/jca.17648
  • Buoncervello M, Gabriele L, Toschi E. The janus face of tumor microenvironment targeted by immunotherapy. Int J Mol Sci. 2019;20:17. doi:10.3390/ijms20174320
  • Baxevanis CN, Sofopoulos M, Fortis SP, Perez SA. The role of immune infiltrates as prognostic biomarkers in patients with breast cancer. Cancer Immunol Immunother. 2019;68(10):1671–1680. doi:10.1007/s00262-019-02327-7
  • Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 2018;24(7):986–993. doi:10.1038/s41591-018-0078-7
  • Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer. 2016;4(1):59. doi:10.1186/s40425-016-0165-6
  • Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–209. doi:10.1038/nature13480
  • Mahmoud SM, Paish EC, Powe DG, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–1955. doi:10.1200/JCO.2010.30.5037
  • Matsumoto H, Thike AA, Li H, et al. Increased CD4 and CD8-positive T cell infiltrate signifies good prognosis in a subset of triple-negative breast cancer. Breast Cancer Res Treat. 2016;156(2):237–247. doi:10.1007/s10549-016-3743-x
  • Li XD, Wu J, Gao D, et al. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341(6152):1390–1394. doi:10.1126/science.1244040
  • Schanoski AS, Le TT, Kaiserman D, et al. Granzyme A in Chikungunya and other arboviral infections. Front Immunol. 2020;10:3083. doi:10.3389/fimmu.2019.03083
  • Shimizu K, Yamasaki S, Sakurai M, et al. Granzyme A stimulates pDCs to promote adaptive immunity via induction of type I IFN. Front Immunol. 2019;10:1450. doi:10.3389/fimmu.2019.01450
  • Santiago L, Castro M, Sanz-Pamplona R, et al. Extracellular granzyme A promotes colorectal cancer development by enhancing gut inflammation. Cell Rep. 2020;32(1):107847. doi:10.1016/j.celrep.2020.107847
  • Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368(6494):eaaz7548. doi:10.1126/science.aaz7548
  • Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–D963. doi:10.1093/nar/gkx1090
  • Li B, Severson E, Pignon JC, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17(1):174. doi:10.1186/s13059-016-1028-7
  • Ru B, Wong CN, Tong Y, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–4202. doi:10.1093/bioinformatics/btz210
  • Gou R, Zhu L, Zheng M, et al. Annexin A8 can serve as potential prognostic biomarker and therapeutic target for ovarian cancer: based on the comprehensive analysis of annexins. J Transl Med. 2019;17(1):275. doi:10.1186/s12967-019-2023-z
  • Wu CH, Li J, Li L, et al. Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. J Extracell Vesicles. 2019;8(1):1588538. doi:10.1080/20013078.2019.1588538
  • Della-Torre E, Bozzalla-Cassione E, Sciorati C, et al. A CD8α- subset of CD4+SLAMF7+ cytotoxic T cells is expanded in patients with IgG4-related disease and decreases following glucocorticoid treatment. Arthritis Rheumatol. 2018;70(7):1133–1143. doi:10.1002/art.40469
  • García-Laorden MI, Stroo I, Terpstra S, et al. Expression and function of Granzymes A and B in Escherichia coli peritonitis and sepsis. Mediators Inflamm. 2017;2017:4137563. doi:10.1155/2017/4137563
  • de Jong HK, Garcia-Laorden MI, Hoogendijk AJ, et al. Expression of intra- and extracellular granzymes in patients with typhoid fever. PLoS Negl Trop Dis. 2017;11(7):e0005823. doi:10.1371/journal.pntd.0005823
  • Stewart SE, D’Angelo ME, Bird PI. Intercellular communication via the endo-lysosomal system: translocation of granzymes through membrane barriers. Biochim Biophys Acta. 2012;1824(1):59–67. doi:10.1016/j.bbapap.2011.05.020
  • Moore JC, Mulligan TS, Yordán NT, et al. T cell immune deficiency in zap70 Mutant Zebrafish. Mol Cell Biol. 2016;36(23):2868–2876. doi:10.1128/MCB.00281-16
  • López-Ortega O, Ovalle-García E, Ortega-Blake I, et al. Myo1g is an active player in maintaining cell stiffness in B-lymphocytes. Cytoskeleton. 2016;73(5):258–268. doi:10.1002/cm.21299
  • Garg A, Kaul D. APOBEC3G has the ability to programme T cell plasticity. Blood Cells Mol Dis. 2016;59:108–112. doi:10.1016/j.bcmd.2016.04.013
  • Huo Q, Li Z, Chen S, Wang J, Li J, Xie N. VWCE as a potential biomarker associated with immune infiltrates in breast cancer. Cancer Cell Int. 2021;21(1):272. doi:10.1186/s12935-021-01955-3
  • Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. doi:10.1038/nrc3245
  • Oda K, Kato K, Nakamura M, et al. Surface marker profiles on lung lymphocytes may predict the mechanism of immune-mediated pneumonitis triggered by tumor infiltrating lymphocytes in lung cancer patients treated with pembroli zumab. Lung Cancer. 2018;118:171–172. doi:10.1016/j.lungcan.2018.02.012
  • Shimizu S, Hiratsuka H, Koike K, et al. Tumor-infiltrating CD8+ T cell density is an independent prognostic marker for oral squamous cell carcinoma. Cancer Med. 2019;8(1):80–93. doi:10.1002/cam4.1889
  • Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 2020;200(2):108–119. doi:10.1111/cei.13407
  • Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open. 2020;4(Suppl3):e000629. doi:10.1136/esmoopen-2019-000629
  • Fang J, Chen F, Liu D, Gu F, Chen Z, Wang Y. Prognostic value of immune checkpoint molecules in breast cancer. Biosci Rep. 2020;40(7):BSR20201054. doi:10.1042/BSR20201054