279
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Immunotherapy: Constructive Approach for Breast Cancer Treatment

ORCID Icon, ORCID Icon, ORCID Icon, , , , , & show all
Pages 925-951 | Received 06 Jun 2023, Accepted 28 Nov 2023, Published online: 15 Dec 2023

References

  • García-Aranda M, Redondo M. Immunotherapy: a challenge of breast cancer treatment. Cancers. 2019;11(12):1822. doi:10.3390/cancers11121822
  • Liu JP, Chen W, Schwarer AP, Li H. Telomerase in cancer immunotherapy. Biochim Biophys Acta. 2010;1805(1):35–42.
  • Adams S, Gatti-Mays ME, Kalinsky K, et al. Current landscape of immunotherapy in breast cancer: a review. JAMA Oncol. 2019;5(8):1205–1214. doi:10.1001/jamaoncol.2018.7147
  • Stanton SE, Adams S, Disis ML. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol. 2016;2(10):1354–1360. doi:10.1001/jamaoncol.2016.1061
  • Arneth B. Tumor microenvironment. Medicina. 2019;56(1):15. doi:10.3390/medicina56010015
  • Arnold M, Morgan E, Rumgay H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;66:15–23. doi:10.1016/j.breast.2022.08.010
  • Fatima N, Liu L, Hong S, et al. Prediction of breast cancer, comparative review of machine learning techniques, and their analysis. IEEE Access. 2020;8:150360–150376. doi:10.1109/ACCESS.2020.3016715
  • Mohammed SI, Torres-Luquis O, Zhou W, et al. Tumor-draining lymph secretome en route to the regional lymph node in breast cancer metastasis. Breast Cancer. 2020;57–67.
  • Finn OJ. The Dawn of vaccines for cancer prevention. Nature Rev Immunol. 2018;18(3):183–194. doi:10.1038/nri.2017.140
  • Silverstein AM. Paul Ehrlich’s Receptor Immunology: The Magnificent Obsession. Elsevier; 2001.
  • Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol. 2002;3(11):991–998. doi:10.1038/ni1102-991
  • Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008;27(45):5932–5943. doi:10.1038/onc.2008.267
  • Beaven MA. Our perception of the mast cell from Paul Ehrlich to now. Eur J Immunol. 2009;39(1):11–25. doi:10.1002/eji.200838899
  • Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–360. doi:10.1146/annurev.immunol.22.012703.104803
  • Bhatia A, Kumar Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Exp Rev Clin Immunol. 2014;10(1):41–62. doi:10.1586/1744666X.2014.865519
  • Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571. doi:10.1038/nature13954
  • Kennedy LB, Salama AK. A review of cancer immunotherapy toxicity. Ca A Cancer J Clin. 2020;70(2):86–104. doi:10.3322/caac.21596
  • Yang Z, Ma Y, Zhao H, et al. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(2):e1590. doi:10.1002/wnan.1590
  • Klein G. Tumor antigens. Ann Rev Microbiol. 1966;20(1):223–252. doi:10.1146/annurev.mi.20.100166.001255
  • Solomon E, Borrow J, Goddard AD. Chromosome aberrations and cancer. Science. 1991;254(5035):1153–1160. doi:10.1126/science.1957167
  • Chaudhuri S, Cariappa A, Tang M, et al. Genetic susceptibility to breast cancer: HLA DQB* 03032 and HLA DRB1* 11 may represent protective alleles. Proc Natl Acad Sci. 2000;97(21):11451–11454. doi:10.1073/pnas.97.21.11451
  • Wang Z, Cao YJ. Adoptive cell therapy targeting neoantigens: a frontier for cancer research. Front Immunol. 2020;11:176. doi:10.3389/fimmu.2020.00176
  • Teixeira MR, Pandis N, Heim S. Cytogenetic clues to breast carcinogenesis. Genes Chromosomes Cancer. 2002;33(1):1–16. doi:10.1002/gcc.1206
  • Gil Del Alcazar CR, Huh SJ, Ekram MB, et al. Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discovery. 2017;7(10):1098–1115. doi:10.1158/2159-8290.CD-17-0222
  • Criscitiello C. Tumor-associated antigens in breast cancer. Breast Care. 2012;7(4):262–266. doi:10.1159/000342164
  • Nicolini A, Carpi A. Immune manipulation of advanced breast cancer: an interpretative model of the relationship between immune system and tumor cell biology. Med Res Rev. 2009;29(3):436–471. doi:10.1002/med.20143
  • VanKlompenberg MK, Bedalov CO, Soto KF, et al. APC selectively mediates response to chemotherapeutic agents in breast cancer. BMC Cancer. 2015;15(1):1–14. doi:10.1186/s12885-015-1456-x
  • Guđmundsdóttir I, Gunnlaugur Jónasson J, Sigurđsson H, et al. Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int j Cancer. 2000;89(6):500–505.
  • Li B, Geng R, Wu Q, et al. Alterations in immune-related genes as potential marker of prognosis in breast cancer. Front Oncol. 2020;10:333. doi:10.3389/fonc.2020.00333
  • Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nature Rev Drug Discov. 2020;19(3):200–218. doi:10.1038/s41573-019-0052-1
  • van der Burg SH. Correlates of Immune and Clinical Activity of Novel Cancer Vaccines. in Seminars in Immunology. Elsevier; 2018.
  • Rong L, Li R, Li S, et al. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol Lett. 2016;11(1):500–504. doi:10.3892/ol.2015.3841
  • Homet Moreno B, Ribas A. Anti-programmed cell death protein-1/ligand-1 therapy in different cancers. Br J Cancer. 2015;112(9):1421–1427. doi:10.1038/bjc.2015.124
  • Mao H, Zhang L, Yang Y, et al. New insights of CTLA-4 into its biological function in breast cancer. Current Cancer Drug Targets. 2010;10(7):728–736. doi:10.2174/156800910793605811
  • Behranvand N, Nasri F, Zolfaghari Emameh R, et al. Chemotherapy: a double-edged sword in cancer treatment. Cancer Immunol Immunother. 2022;71(3):507–526.
  • Sanz-Garcia E, Zhao E, Bratman SV, et al. Monitoring and adapting cancer treatment using circulating tumor DNA kinetics: current research, opportunities, and challenges. Sci Adv. 2022;8(4):eabi8618. doi:10.1126/sciadv.abi8618
  • Elez E, Chianese C, Sanz‐García E, et al. Impact of circulating tumor DNA mutant allele fraction on prognosis in RAS -mutant metastatic colorectal cancer. Mol Oncol. 2019;13(9):1827–1835. doi:10.1002/1878-0261.12547
  • Gao Q, Feng J, Liu W, et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Delivery Rev. 2022;188:114445. doi:10.1016/j.addr.2022.114445
  • Schuster M, Nechansky A, Kircheis R. Cancer immunotherapy. Biotechnol J. 2006;1(2):138–147. doi:10.1002/biot.200500044
  • Park W, Heo Y-J, Han DK. New opportunities for nanoparticles in cancer immunotherapy. Biomater Res. 2018;22(1):1–10. doi:10.1186/s40824-018-0133-y
  • Gross S, Erdmann M, Haendle I, et al. Twelve-year survival and immune correlates in dendritic cell–vaccinated melanoma patients. JCI Insight. 2017;2(8). doi:10.1172/jci.insight.91438
  • Till SJ, Francis JN, Nouri-Aria K, et al. Mechanisms of immunotherapy. J Allergy Clin Immunol. 2004;113(6):1025–1034. doi:10.1016/j.jaci.2004.03.024
  • Gp D, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–998.
  • Marin-Acevedo JA, Soyano AE, Dholaria B, et al. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol. 2018;11(1):1–25. doi:10.1186/s13045-017-0552-6
  • Galon J, Bruni D. Tumor immunology and tumor evolution: intertwined histories. Immunity. 2020;52(1):55–81. doi:10.1016/j.immuni.2019.12.018
  • Kim H, Choi J-M, Lee K-M. Immune checkpoint blockades in triple-negative breast cancer: current state and molecular mechanisms of resistance. Biomedicines. 2022;10(5):1130. doi:10.3390/biomedicines10051130
  • Emens LA, Cruz C, Eder JP, et al. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer: a phase 1 study. JAMA Oncol. 2019;5(1):74–82. doi:10.1001/jamaoncol.2018.4224
  • Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(1):44–59. doi:10.1016/S1470-2045(19)30689-8
  • Voorwerk L, Slagter M, Horlings HM, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nature Med. 2019;25(6):920–928. doi:10.1038/s41591-019-0432-4
  • Dirix LY, Takacs I, Jerusalem G, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat. 2018;167(3):671–686. doi:10.1007/s10549-017-4537-5
  • Loibl S, Untch M, Burchardi N, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol. 2019;30(8):1279–1288. doi:10.1093/annonc/mdz158
  • McArthur HL, Diab A, Page DB, et al. A pilot study of preoperative single-dose ipilimumab and/or cryoablation in women with early-stage breast cancer with comprehensive immune profiling. Clin Cancer Res. 2016;22(23):5729–5737. doi:10.1158/1078-0432.CCR-16-0190
  • Sabel MS, Nehs MA, Su G, et al. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat. 2005;90(1):97–104. doi:10.1007/s10549-004-3289-1
  • Vonderheide RH, LoRusso PM, Khalil M, et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res. 2010;16(13):3485–3494. doi:10.1158/1078-0432.CCR-10-0505
  • Curtin NJ, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med. 2013;34(6):1217–1256. doi:10.1016/j.mam.2013.01.006
  • Jiao S, Xia W, Yamaguchi H, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23(14):3711–3720. doi:10.1158/1078-0432.CCR-16-3215
  • Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors. Cancer Cell. 2020;37(4):443–455. doi:10.1016/j.ccell.2020.03.017
  • Sceneay J, Goreczny GJ, Wilson K, et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 2019;9(9):1208–1227. doi:10.1158/2159-8290.CD-18-1454
  • Siddiqui I, Schaeuble K, Chennupati V, et al. Intratumoral Tcf1+ PD-1+ CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50(1):195–211. e10. doi:10.1016/j.immuni.2018.12.021
  • Jansen CS, Prokhnevska N, Master VA, et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature. 2019;576(7787):465–470. doi:10.1038/s41586-019-1836-5
  • Falvo P, Orecchioni S, Hillje R, et al. Cyclophosphamide and vinorelbine activate stem-like CD8+ T cells and improve anti-PD-1 efficacy in triple-negative breast cancer. Cancer Res. 2021;81(3):685–697. doi:10.1158/0008-5472.CAN-20-1818
  • Xiao Y, Ma D, Zhao S, et al. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clin Cancer Res. 2019;25(16):5002–5014. doi:10.1158/1078-0432.CCR-18-3524
  • Wu S-Y, Xiao Y, Wei J-L, et al. MYC suppresses STING-dependent innate immunity by transcriptionally upregulating DNMT1 in triple-negative breast cancer. J Immunother Cancer. 2021;9(7):e002528. doi:10.1136/jitc-2021-002528
  • Loi S, Dushyanthen S, Beavis PA, et al. RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 2016;22(6):1499–1509. doi:10.1158/1078-0432.CCR-15-1125
  • Huang Y, Zhang H-L, Li Z-L, et al. FUT8-mediated aberrant N-glycosylation of B7H3 suppresses the immune response in triple-negative breast cancer. Nat Commun. 2021;12(1):2672. doi:10.1038/s41467-021-22618-x
  • Hu Q, Ye Y, Chan L-C, et al. Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nature Immunol. 2019;20(7):835–851. doi:10.1038/s41590-019-0400-7
  • Ohaegbulam KC, Assal A, Lazar-Molnar E, et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015;21(1):24–33. doi:10.1016/j.molmed.2014.10.009
  • Bin Umair M, Akusa FN, Kashif H, et al. Viruses as tools in gene therapy, vaccine development, and cancer treatment. Arch Virol. 2022;167(6):1387–1404. doi:10.1007/s00705-022-05432-8
  • Gardella B, Gritti A, Soleymaninejadian E, et al. New Perspectives in Therapeutic Vaccines for HPV: a Critical Review. Medicina. 2022;58(7):860. doi:10.3390/medicina58070860
  • Corti C, Giachetti PPMB, Eggermont AMM, et al. Therapeutic vaccines for breast cancer: has the time finally come? Eur. J. Cancer. 2022;160:150–174. doi:10.1016/j.ejca.2021.10.027
  • Banday AH, Jeelani S, Hruby VJ. Cancer vaccine adjuvants–recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol. 2015;37(1):1–11. doi:10.3109/08923973.2014.971963
  • Luo W, Yang G, Luo W, et al. Novel therapeutic strategies and perspectives for metastatic pancreatic cancer: vaccine therapy is more than just a theory. Cancer Cell Int. 2020;20(1):1–10. doi:10.1186/s12935-020-1147-9
  • Melief CJ, van Hall T, Arens R, et al. Therapeutic cancer vaccines. J Clin Investig. 2015;125(9):3401–3412. doi:10.1172/JCI80009
  • Guo C, Manjili MH, Subjeck JR, et al. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res. 2013;119:421–475. doi:10.1016/B978-0-12-407190-2.00007-1
  • Zhang L, Xu L, Wang Y, et al. A novel therapeutic vaccine based on graphene oxide nanocomposite for tumor immunotherapy. Chin Chem Lett. 2022;33(8):4089–4095. doi:10.1016/j.cclet.2022.01.071
  • Shah S, Famta P, Tiwari V, et al. Instigation of the epoch of nanovaccines in cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;15:e1870.
  • Debien V, De Caluwé A, Wang X, et al. Immunotherapy in breast cancer: an overview of current strategies and perspectives. NPJ Breast Cancer. 2023;9(1):7. doi:10.1038/s41523-023-00508-3
  • Zhu S-Y, Yu K-D. Breast cancer vaccines: disappointing or promising? Front Immunol. 2022;13:190.
  • Huang L, Rong Y, Tang X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Molecular Cancer. 2022;21(1):1–19. doi:10.1186/s12943-022-01515-x
  • Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–792. doi:10.1056/NEJM200103153441101
  • Srivastava PK. Therapeutic cancer vaccines. Curr Opinion Immunol. 2006;18(2):201–205. doi:10.1016/j.coi.2006.01.009
  • Mittendorf EA, Peoples GE, Singletary SE. Breast cancer vaccines: promise for the future or pipe dream? Cancer. 2007;110(8):1677–1686. doi:10.1002/cncr.22978
  • Parkin DM. The global health burden of infection‐associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030–3044. doi:10.1002/ijc.21731
  • Chung MA, Luo Y, O’Donnell M, et al. Development and preclinical evaluation of a Bacillus Calmette-Guérin-MUC1-based novel breast cancer vaccine. Cancer Res. 2003;63(6):1280–1287.
  • Islam MR, Islam F, Nafady MH, et al. Natural small molecules in breast cancer treatment: understandings from a therapeutic viewpoint. Molecules. 2022;27(7):2165. doi:10.3390/molecules27072165
  • Bednarek AK, Sahin A, Brenner AJ, et al. Analysis of telomerase activity levels in breast cancer: positive detection at the in situ breast carcinoma stage. Clin Cancer Res. 1997;3(1):11–16.
  • Disis ML, Cecil DL. Breast cancer vaccines for treatment and prevention. Breast Cancer Res Treat. 2022;191(3):481–489. doi:10.1007/s10549-021-06459-2
  • Hodge JW. Carcinoembryonic antigen as a target for cancer vaccines. CII. 1996;43(3):127–134. doi:10.1007/s002620050313
  • Beckwith DM, Cudic M. Tumor-Associated O-Glycans of MUC1: Carriers of the Glyco-Code and Targets for Cancer Vaccine Design. in Seminars in Immunology. Elsevier; 2020.
  • Runnebaum IB, Nagarajan M, Bowman M, et al. Mutations in p53 as potential molecular markers for human breast cancer. Proc Natl Acad Sci. 1991;88(23):10657–10661. doi:10.1073/pnas.88.23.10657
  • Watson MA, Dintzis S, Darrow CM, et al. Mammaglobin expression in primary, metastatic, and occult breast cancer. Cancer Res. 1999;59(13):3028–3031.
  • Sahin U, Türeci Ö, Chen Y-T, et al. Expression of multiple cancer/testis (CT) antigens in breast cancer and melanoma: basis for polyvalent CT vaccine strategies. Int J Cancer. 1998;78(3):387–389. doi:10.1002/(SICI)1097-0215(19981029)78:3<387::AID-IJC22>3.0.CO;2-2
  • Xia J, Tanaka Y, Koido S, et al. Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J Immunol. 2003;170(4):1980–1986. doi:10.4049/jimmunol.170.4.1980
  • Avigan D, Vasir B, Gong J, et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res. 2004;10(14):4699–4708. doi:10.1158/1078-0432.CCR-04-0347
  • Tang D-C, DeVit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992;356(6365):152–154. doi:10.1038/356152a0
  • Clifton GT, Hale D, Vreeland TJ, et al. Results of a randomized phase IIb trial of nelipepimut-S+ trastuzumab versus trastuzumab to prevent recurrences in patients with high-risk HER2 low-expressing breast cancer. Clin Cancer Res. 2020;26(11):2515–2523. doi:10.1158/1078-0432.CCR-19-2741
  • Chick RC, Clifton GT, Hale DF, et al. Subgroup analysis of nelipepimut-S plus GM-CSF combined with trastuzumab versus trastuzumab alone to prevent recurrences in patients with high-risk, HER2 low-expressing breast cancer. Clin Immunol. 2021;225:108679. doi:10.1016/j.clim.2021.108679
  • Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. Breast Cancer. 2019;11:53–69. doi:10.2147/BCTT.S175360
  • Patel S, McWilliams D, Fischette CT, et al. Final five-year median follow-up safety data from a prospective, randomized, placebo-controlled, single-blinded, multicenter, Phase IIb study evaluating the use of HER2/Neu peptide GP2+ GM-CSF vs. GM-CSF alone after adjuvant trastuzumab in HER2-positive. J Clin Oncol. 2021;39:542. doi:10.1200/JCO.2021.39.15_suppl.542
  • McCarthy PM, Clifton GT, Vreeland TJ, et al. AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence. Exp Opinion Investig Drugs. 2021;30(1):5–11. doi:10.1080/13543784.2021.1849140
  • Disis ML, Schiffman K, Guthrie K, et al. Effect of dose on immune response in patients vaccinated with an her-2/neu intracellular domain protein—based vaccine. J Clin Oncol. 2004;22(10):1916–1925. doi:10.1200/JCO.2004.09.005
  • Arab A, Yazdian-Robati R, Behravan J. HER2-positive breast cancer immunotherapy: a focus on vaccine development. Arch Immunol Therapiae Exp. 2020;68(1):1–18. doi:10.1007/s00005-019-00566-1
  • Park JW, Melisko ME, Esserman LJ, et al. Treatment with autologous antigen-presenting cells activated with the HER-2 –based antigen lapuleucel-T: results of a Phase I study in immunologic and clinical activity in HER-2–overexpressing breast cancer. J Clin Oncol. 2007;25(24):3680–3687. doi:10.1200/JCO.2006.10.5718
  • Larocca C, Schlom J. Viral vector–based therapeutic cancer vaccines. Cancer J. 2011;17(5):359. doi:10.1097/PPO.0b013e3182325e63
  • Disis ML, Coveler AL, Higgins D, et al. A Phase I Trial of the Safety and Immunogenicity of a DNA-Based Vaccine Encoding the HER2/Neu (HER2) Intracellular Domain in Subjects with HER2+ Breast Cancer. American Society of Clinical Oncology; 2014.
  • Criscitiello C, Corti C, Pravettoni G, et al. Managing side effects of immune checkpoint inhibitors in breast cancer. Critical Rev Oncol. 2021;162:103354. doi:10.1016/j.critrevonc.2021.103354
  • Bykov VJ, Eriksson SE, Bianchi J, et al. Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer. 2018;18(2):89–102. doi:10.1038/nrc.2017.109
  • Chung VM, Kos F, Hardwick N, et al. A Phase 1 Study of p53MVA Vaccine in Combination with Pembrolizumab. American Society of Clinical Oncology; 2018.
  • Jeng L-B, Liao L-Y, Shih F-Y, et al. Dendritic-Cell-vaccine-based immunotherapy for hepatocellular carcinoma: clinical trials and recent preclinical studies. Cancers. 2022;14(18):4380. doi:10.3390/cancers14184380
  • Ke Y, Zhu J, Chu Y, et al. Bifunctional fusion membrane‐based hydrogel enhances antitumor potency of autologous cancer vaccines by activating dendritic cells. Adv Funct Mater. 2022;32(29):2201306. doi:10.1002/adfm.202201306
  • Xia D, Li F, Xiang J. Engineered fusion hybrid vaccine of IL-18 gene-modified tumor cells and dendritic cells induces enhanced antitumor immunity. Cancer Biother Radiopharm. 2004;19(3):322–330. doi:10.1089/1084978041424990
  • Avigan D, Rosenblatt J, Kufe D. Dendritic/Tumor Fusion Cells as Cancer Vaccines. in Seminars in Oncology. Elsevier; 2012.
  • Narayanan K, Jaramillo A, Benshoff ND, et al. Response of established human breast tumors to vaccination with mammaglobin-A cDNA. J Natl Cancer Inst. 2004;96(18):1388–1396. doi:10.1093/jnci/djh261
  • Liao F, Zhang J, Hu Y, et al. Efficacy of an ALDH peptide-based dendritic cell vaccine targeting cancer stem cells. Cancer Immunol Immunother. 2022;71(8):1959–1973. doi:10.1007/s00262-021-03129-6
  • Chopra A, Kim TS, O‐Sullivan I, et al. Combined therapy of an established, highly aggressive breast cancer in mice with paclitaxel and a unique DNA‐based cell vaccine. Int j Cancer. 2006;118(11):2888–2898. doi:10.1002/ijc.21724
  • Hsu C, Kavathas P, Herzenberg LA. Cell-surface antigens expressed on L-cells transfected with whole DNA from non-expressing and expressing cells. Nature. 1984;312(5989):68–69. doi:10.1038/312068a0
  • Kavathas P, Herzenberg LA. Stable transformation of mouse L cells for human membrane T-cell differentiation antigens, HLA and beta 2-microglobulin: selection by fluorescence-activated cell sorting. Proc Natl Acad Sci. 1983;80(2):524–528. doi:10.1073/pnas.80.2.524
  • Karim AM, Eun Kwon J, Ali T, et al. Triple-negative breast cancer: epidemiology, molecular mechanisms, and modern vaccine-based treatment strategies. Biochem Pharmacol. 2023;212:115545. doi:10.1016/j.bcp.2023.115545
  • Chen Y, Hu D, Eling DJ, et al. DNA vaccines encoding full-length or truncated Neu induce protective immunity against Neu-expressing mammary tumors. Cancer Res. 1998;58(9):1965–1971.
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239(1):62–84. doi:10.1111/j.1600-065X.2010.00980.x
  • Liu MA, Wahren B, Hedestam GBK. DNA vaccines: recent developments and future possibilities. Human Gene Therapy. 2006;17(11):1051–1061. doi:10.1089/hum.2006.17.1051
  • Toussaint B, Chauchet X, Wang Y, et al. Live-attenuated bacteria as a cancer vaccine vector. Exp Rev Vaccines. 2013;12(10):1139–1154. doi:10.1586/14760584.2013.836914
  • Tangney M, Gahan CG. Listeria monocytogenes as a vector for anti-cancer therapies. Curr Gene Therapy. 2010;10(1):46–55. doi:10.2174/156652310790945539
  • Josefsberg JO, Buckland B. Vaccine process technology. Biotechnol Bioeng. 2012;109(6):1443–1460. doi:10.1002/bit.24493
  • Marra F, Cloutier K, Oteng B, et al. Effectiveness and cost effectiveness of human papillomavirus vaccine: a systematic review. Pharmacoeconomics. 2009;27(2):127–147. doi:10.2165/00019053-200927020-00004
  • Campoli M, et al. Mechanisms of tumor evasion. In: Tumor Immunology and Cancer Vaccines; 2005:61–88.
  • Dougan M, Dranoff G. Immune therapy for cancer. Ann Rev Immunol. 2009;27(1):83–117. doi:10.1146/annurev.immunol.021908.132544
  • Bonassi S, Znaor A, Ceppi M, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis. 2007;28(3):625–631. doi:10.1093/carcin/bgl177
  • Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol. 2016;28(7):319–328. doi:10.1093/intimm/dxw027
  • Pan Q, Li Q, Liu S, et al. Concise review: targeting cancer stem cells using immunologic approaches. Stem Cells. 2015;33(7):2085–2092. doi:10.1002/stem.2039
  • Zhou L, Lu L, Wicha MS, et al. Promise of cancer stem cell vaccine. Hum Vaccin Immunother. 2015;11(12):2796–2799. doi:10.1080/21645515.2015.1083661
  • Teitz-Tennenbaum S, Wicha MS, Chang AE, et al. Targeting cancer stem cells via dendritic-cell vaccination. Oncoimmunology. 2012;1(8):1401–1403. doi:10.4161/onci.21026
  • Yu J, Sun H, Cao W, et al. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022;11(1):3. doi:10.1186/s40164-022-00257-2
  • Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5(1):8. doi:10.1038/s41392-020-0110-5
  • Akbar Samadani A, Keymoradzdeh A, Shams S, et al. Mechanisms of cancer stem cell therapy. Clin Chim Acta. 2020;510:581–592. doi:10.1016/j.cca.2020.08.016
  • Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25(1):20. doi:10.1186/s12929-018-0426-4
  • Velasco-Velázquez MA, Homsi N, De La Fuente M, et al. Breast cancer stem cells. Int j Biochemistry Cell Biol. 2012;44(4):573–577. doi:10.1016/j.biocel.2011.12.020
  • Bourguignon LY, Wong G, Earle C, et al. Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem. 2010;285(47):36721–36735. doi:10.1074/jbc.M110.162305
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–3988. doi:10.1073/pnas.0530291100
  • Ye F, Qiu Y, Li L, et al. The presence of EpCAM - /CD49f + cells in breast cancer is associated with a poor clinical outcome. J Breast Cancer. 2015;18(3):242–248. doi:10.4048/jbc.2015.18.3.242
  • Lo P-K, Kanojia D, Liu X, et al. CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin–TGFβ signaling. Oncogene. 2012;31(21):2614–2626. doi:10.1038/onc.2011.439
  • Wright MH, Calcagno AM, Salcido CD, et al. Brca1 breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics. Br Cancer Res. 2008;10(1):1–16. doi:10.1186/bcr1855
  • Vassilopoulos A, Wang R-H, Petrovas C, et al. Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells. Int J Bio Sci. 2008;4(3):133. doi:10.7150/ijbs.4.133
  • Marcato P, Dean CA, Pan D, et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29(1):32–45. doi:10.1002/stem.563
  • Croker AK, Goodale D, Chu J, et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 2009;13(8b):2236–2252. doi:10.1111/j.1582-4934.2008.00455.x
  • Sun M, Yang C, Zheng J, et al. Enhanced efficacy of chemotherapy for breast cancer stem cells by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Acta Biomater. 2015;28:171–182. doi:10.1016/j.actbio.2015.09.029
  • Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor–initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res. 2011;17(22):7105–7115. doi:10.1158/1078-0432.CCR-11-0071
  • Bai X, Chen Y, Hou X, et al. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev. 2016;48(4):541–567. doi:10.1080/03602532.2016.1197239
  • Chen D, Bhat-Nakshatri P, Goswami C, et al. ANTXR1, a stem cell-enriched functional biomarker, connects collagen signaling to cancer stem-like cells and metastasis in breast cancer. Cancer Res. 2013;73(18):5821–5833. doi:10.1158/0008-5472.CAN-13-1080
  • Baccelli I, Schneeweiss A, Riethdorf S, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nature Biotechnol. 2013;31(6):539–544. doi:10.1038/nbt.2576
  • Hwang-Verslues WW, Kuo W-H, Chang P-H, et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One. 2009;4(12):e8377. doi:10.1371/journal.pone.0008377
  • Battula VL, Shi Y, Evans KW, et al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Investig. 2012;122(6):2066–2078. doi:10.1172/JCI59735
  • Liang Y-J, Wang C-Y, Wang I-A, et al. Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget. 2017;8(29):47454. doi:10.18632/oncotarget.17665
  • Zeng X, Liu C, Yao J, et al. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res. 2021;163:105320. doi:10.1016/j.phrs.2020.105320
  • Zhang W, Kong X, Ai B, et al. Research progresses in immunological checkpoint inhibitors for breast cancer immunotherapy. Front Oncol. 2021;11:582664. doi:10.3389/fonc.2021.582664
  • Lu H, Chen I, Shimoda LA, et al. Erratum: chemotherapy-Induced Ca2+ release stimulates breast cancer stem cell enrichment (Chemotherapy-Induced Ca^ 2^+ release stimulates breast cancer stem cell enrichment). Cell Rep. 2021;34(1):108605. doi:10.1016/j.celrep.2020.108605
  • Liu Q, Hodge J, Wang J, et al. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation. Theranostics. 2020;10(18):8365. doi:10.7150/thno.45395
  • Gilani RA, Phadke S, Bao LW, et al. Retraction: UM-164: A Potent c-Src/p38 Kinase Inhibitor with in vivo Activity Against Triple-Negative Breast Cancer. AACR; 2020.