128
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Retrospective Analysis of the Clinical Characteristics of Patients with Breast Cancer Treated with Telomerase Peptide Immunotherapy Combined with Cytotoxic Chemotherapy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 955-966 | Received 28 Aug 2023, Accepted 08 Dec 2023, Published online: 20 Dec 2023

References

  • Akincilar SC, Unal B, Tergaonkar V. Reactivation of telomerase in cancer. Cell Mol Life Sci. 2016;73:1659–1670. doi:10.1007/s00018-016-2146-9
  • Vonderheide RH, Hahn WC, Schultze JL, et al. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity. 1999;10(6):673–679. doi:10.1016/S1074-7613(00)80066-7
  • Shay JW, Wright WE. Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov. 2006;5:577–584. doi:10.1038/nrd2081
  • Jafri MA, Ansari SA, Alqahtani MH, et al. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8(1):69. doi:10.1186/s13073-016-0324-x
  • Liu JP, Chen W, Schwarer AP, et al. Telomerase in cancer immunotherapy. Biochim Biophys Acta. 2010;1805:35–42. doi:10.1016/j.bbabio.2010.04.123
  • Inderberg-Suso EM, Trachsel S, Lislerud K, Rasmussen AM, Gaudernack G. Widespread CD4+ T-cell reactivity to novel hTERT epitopes following vaccination of cancer patients with a single hTERT peptide GV1001. Oncoimmunol. 2012;1:670–686. doi:10.4161/onci.20426
  • Staff C, Mozaffari F, Frodin JE, et al. Telomerase (GV1001) vaccination together with gemcitabine in advanced pancreatic cancer patients. Int J Oncol. 2014;45:1293–1303. doi:10.3892/ijo.2014.2496
  • Brunsvig PF, Aamdal S, Gjertsen MK, et al. Telomerase peptide vaccination: a Phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2006;55:1553–1564. doi:10.1007/s00262-006-0145-7
  • Mizukoshi E, Kanek S. Telomerase-targeted cancer immunotherapy. Int J Mol Sci. 2019;20:1823. doi:10.3390/ijms20081823
  • Middleton G, Silcocks P, Cox T, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomized, Phase 3 trial. Lancet Oncol. 2014;15:829–840. doi:10.1016/S1470-2045(14)70236-0
  • Greten TF, Forner A, Korangy F, et al. A Phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer. 2010;10:209. doi:10.1186/1471-2407-10-209
  • Kyte JA, Gaudernack G, Dueland S, et al. Telomerase peptide vaccination combined with temozolomide: a clinical trial in stage IV melanoma patients. Clin Cancer Res. 2011;17(13):4568–4580. doi:10.1158/1078-0432.CCR-11-0184
  • Su Z, Dannull J, Yang BK, et al. Telomerase mRNA transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol. 2005;174:3798–3807. doi:10.4049/jimmunol.174.6.3798
  • Hunger RE, Lang K, Markowski CJ, et al. Vaccination of patients with cutaneous melanoma with telomerase-specific peptides. Cancer Immunol Immunother. 2011;60:1553–1564. doi:10.1007/s00262-011-1061-z
  • Matthew JL, Judit SA, Gabrielle SL, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3:911–926. doi:10.1038/s43018-022-00418-6
  • Mazloumi Z, Rafat A, Dizaji Asl K, et al. A combination of telomerase inhibition and NK cell therapy increased breast cancer cell line apoptosis. Biochem Biophys Res Commun. 2023;640:50–55. doi:10.1016/j.bbrc.2022.11.090
  • Shi Y, Sun L, Chen G, et al. A combination of the telomerase inhibitor, BIBR1532, and paclitaxel synergistically inhibit cell proliferation in breast cancer cell lines. Target Oncol. 2015;10(4):565–573. doi:10.1007/s11523-015-0364-y
  • Nasrollahzadeh A, Bashash D, Kabuli M, et al. Arsenic trioxide and BIBR1532 synergistically inhibit breast cancer cell proliferation through attenuation of NF-κB signaling pathway. Life Sci. 2020;257:118060. doi:10.1016/j.lfs.2020.118060
  • Stuart A. A test for homogeneity of the marginal distributions in a two-way classification. Biometrika. 1955;42:412–416. doi:10.1093/biomet/42.3-4.412
  • Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017;14:115–128. doi:10.1038/nrclinonc.2016.67
  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10. doi:10.1016/j.immuni.2013.07.012
  • Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4(+) T cells in cancer immunotherapy-new insights into old paradigms. Cancer Gene Ther. 2020;28:5–17. doi:10.1038/s41417-020-0183-x
  • Haabeth OA, Tveita AA, Fauskanger M, et al. How do CD4(+) T cells detect and eliminate tumor cells that either lack or express MHC class II molecules. Front Immunol. 2014;5:174. doi:10.3389/fimmu.2014.00174
  • Dosset M, Castro A, Carter H, Zanetti M. Telomerase and CD4 T cell immunity in cancer. Cancers. 2020;12:1687. doi:10.3390/cancers12061687
  • Wong SB, Bos R, Sherman LA. Tumor-specific CD4+ T cells render the tumor environment permissive for infiltration by low-avidity CD8+ T cells. J Immunol. 2008;180(5):3122–3131. doi:10.4049/jimmunol.180.5.3122
  • Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641–645. doi:10.1126/science.1251102
  • Janssen EM, Droin NM, Lemmens EE, et al. CD4 T-cell help controls CD8 T-cell memory via TRAIL-mediated activation-induced cell death. Nature. 2005;434(7029):88–93. doi:10.1038/nature03337
  • Oh DY, Kwek SS, Raju SS, et al. Intratumoral CD4(+) T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell. 2020;181:1612–1625. doi:10.1016/j.cell.2020.05.017
  • Choi J, Kim H, Kim Y, et al. The anti-inflammatory effect of GV1001 is mediated by the downregulation of ENO1-induced pro-inflammatory cytokine production. Immune Netw. 2015;15:291–303. doi:10.4110/in.2015.15.6.291
  • Ko YJ, Kwon KY, Kum KY, et al. The anti-inflammatory effect of human telomerase-derived peptide on P. gingivalis lipopolysaccharide-induced inflammatory cytokine production and its mechanism in human dental pulp cells. Mediators Inflamm. 2015;2015:385127. doi:10.1155/2015/385127
  • Park HH, Yu HJ, Kim S, et al. Neural stem cells injured by oxidative stress can be rejuvenated by GV1001, a novel peptide, through scavenging free radicals and enhancing survival signals. Neurotoxicology. 2016;55:131–141. doi:10.1016/j.neuro.2016.05.022
  • Loveday RL, Greenman J, Drew PJ, et al. Genetic changes associated with telomerase activity in breast cancer. Int J Cancer. 1999;84(5):516–520. doi:10.1002/(SICI)1097-0215(19991022)84:5<516::AID-IJC12>3.0.CO;2-Y
  • Yashima K, Milchgrub S, Gollahon LS, et al. Telomerase enzyme activity and RNA expression during the multistage pathogenesis of breast carcinoma. Clin Cancer Res. 1998;4:229–234.
  • Hoos A, Hepp HH, Kaul S, et al. Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int, J, Cancer. 1998;79(1):8–12. doi:10.1002/(SICI)1097-0215(19980220)79:1<8::AID-IJC2>3.0.CO;2-5
  • Mokbel KM, Parris CN, Ghilchik M, et al. Telomerase activity and lymphovascular invasion in breast cancer. Eur J Surg Oncol. 2000;26(1):30–33. doi:10.1053/ejso.1999.0736
  • Clark GM, Osborne CK, Levitt D, et al. Telomerase activity and survival of patients with node-positive breast cancer. J Natl Cancer Inst. 1997;89(24):1874–1881. doi:10.1093/jnci/89.24.1874
  • Lu L, Zhang C, Zhu G, et al. Telomerase expression and telomere length in breast cancer and their associations with adjuvant treatment and disease outcome. Breast Cancer Res. 2011;13(3):R56. doi:10.1186/bcr2893
  • Bolzán AD. Effect of chemotherapeutic drugs on telomere length and telomerase activity. Telomere Telomerase. 2016;3:e1488.
  • Xu Y, Goldkorn A. Telomere and telomerase therapeutics in cancer. Genes. 2016;7(6):22. doi:10.3390/genes7060022