288
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Analysis of Communal Molecular Mechanism Between Chronic Obstructive Pulmonary Disease and Osteoporosis

, , , &
Pages 259-271 | Received 10 Nov 2022, Accepted 07 Mar 2023, Published online: 11 Mar 2023

References

  • 2022 GOLD Reports - Global Initiative for Chronic Obstructive Lung Disease - GOLD[EB/OL]; 2022. Available from: https://goldcopd.org/2022-gold-reports-2/. Accessed March 7, 2023.
  • Lareau SC, Fahy B, Meek P, et al. Chronic obstructive pulmonary disease (COPD)[J]. Am J Respir Crit Care Med. 2019;199(1):P1–P2. doi:10.1164/rccm.1991P1
  • Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study[J]. Lancet. 2018;391(10131):1706–1717. doi:10.1016/S0140-6736(18)30841-9
  • Romme EAPM, Smeenk FWJM, Rutten EPA, et al. Osteoporosis in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2013;7(4):397–410. doi:10.1586/17476348.2013.814402
  • Jørgensen NR, Schwarz P. Osteoporosis in chronic obstructive pulmonary disease patients. Curr Opin Pulm Med. 2008;14(2):122–127. doi:10.1097/MCP.0b013e3282f4efb6
  • Kim J, Lin C, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis. Cells. 2020;9(9):2073. doi:10.3390/cells9092073
  • Chen X, Wang Z, Duan N, et al. Osteoblast–osteoclast interactions. Connect Tissue Res. 2018;59(2):99–107. doi:10.1080/03008207.2017.1290085
  • Bitar AN, Syed Sulaiman SA, Ali IH, et al. Osteoporosis among patients with chronic obstructive pulmonary disease: systematic review and meta-analysis of prevalence, severity, and therapeutic outcomes. J Pharm Bioallied Sci. 2019;11(4):310–320. doi:10.4103/jpbs.JPBS_126_19
  • Kespohl B, Schumertl T, Bertrand J, et al. The cytokine interleukin-11 crucially links bone formation, remodeling and resorption. Cytokine Growth Factor Rev. 2021;60:18–27.
  • Liu X, Kirschenbaum A, Yao S, et al. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci. 2006;1068:225–233.
  • Chen Y, Ramsook AH, Coxson HO, et al. Prevalence and Risk Factors for Osteoporosis in Individuals With COPD: a Systematic Review and Meta-analysis. Chest. 2019;156(6):1092–1110.
  • Ferguson GT, Calverley PMA, Anderson JA, et al. Prevalence and progression of osteoporosis in patients with COPD: results from the TOwards a Revolution in COPD Health study. Chest. 2009;136(6):1456–1465.
  • Graat-Verboom L, Spruit MA, van den Borne BEEM, et al. Correlates of osteoporosis in chronic obstructive pulmonary disease: an underestimated systemic component. Respir Med. 2009;103(8):1143–1151.
  • Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37.
  • Leung AKL. The Whereabouts of microRNA Actions: cytoplasm and Beyond. Trends Cell Biol. 2015;25(10):601–610.
  • Backes C, Meese E, Keller A. Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther. 2016;20(6):509–518.
  • Bardou P, Mariette J, Escudié F, et al. jvenn: an interactive Venn diagram viewer. BMC Bioinform. 2014;15(1):293.
  • McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy. Science. 2019;366(6472):548.
  • Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–D131.
  • Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697.
  • Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–2940.
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D612.
  • Adas-Okuma MG, Maeda SS, Gazzotti MR, et al. COPD as an independent risk factor for osteoporosis and fractures. Osteoporos Int. 2020;31(4):687–697.
  • Chen Y, Ramsook AH, Coxson HO, et al. Prevalence and risk factors for osteoporosis in individuals with COPD: a systematic review and meta-analysis. Chest. 2019;156(6):1092.
  • de Sire A, Lippi L, Aprile V, et al. Pharmacological, nutritional, and rehabilitative interventions to improve the complex management of osteoporosis in patients with chronic obstructive pulmonary disease: a narrative review. J Personalized Med. 2022;12(10):5448.
  • Thorpe O, Kumar S, Johnston K. Barriers to and enablers of physical activity in patients with COPD following a hospital admission: a qualitative study. Int J Chron Obstruct Pulmon Dis. 2014;9:115–128.
  • Tønnesen P. Smoking cessation and COPD. Eur Respir Rev. 2013;22(127):37–43.
  • Curtis EM, Moon RJ, Harvey NC, et al. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017;104:29–38.
  • Kokturk N, Baha A, Oh Y, et al. Vitamin D deficiency: what does it mean for chronic obstructive pulmonary disease (COPD)? A comprehensive review for pulmonologists. Clin Respir J. 2018;12(2):382–397.
  • Lippi L, Uberti F, Folli A, et al. Impact of nutraceuticals and dietary supplements on mitochondria modifications in healthy aging: a systematic review of randomized controlled trials. Aging Clin Exp Res. 2022;34(11):2659–2674.
  • Hobbs BD, Tantisira KG. MicroRNAs in COPD: small molecules with big potential. Eur Respir J. 2019;53(4):13.
  • Tubita V, Callejas-Díaz B, Roca-Ferrer J, et al. Role of microRNAs in inflammatory upper airway diseases. Allergy. 2021;76(7):1967–1980.
  • Bellavia D, Salamanna F, Raimondi L, et al. Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci. 2019;76(19):3723–3744.
  • Lin Z, He H, Wang M, et al. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif. 2019;52(6):e12688.
  • Verdelli C, Sansoni V, Perego S, et al. Circulating fractures-related microRNAs distinguish primary hyperparathyroidism-related from estrogen withdrawal-related osteoporosis in postmenopausal osteoporotic women: a pilot study. Bone. 2020;137:115350.
  • Yang J, Xie P, Li Y, et al. Osteoclast-derived miR-23a-5p-containing exosomes inhibit osteogenic differentiation by regulating Runx2. Cell Signal. 2020;70:109504.
  • Gu X, Gao Y, Mu D, et al. MiR-23a-5p modulates mycobacterial survival and autophagy during mycobacterium tuberculosis infection through TLR2/MyD88/NF-κB pathway by targeting TLR2. Exp Cell Res. 2017;354(2):71–77.
  • Panach L, Pineda B, Mifsut D, et al. The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: a genetic and functional study. Bone. 2016;83:94–103.
  • Pineda B, Tarín JJ, Hermenegildo C, et al. Gene-gene interaction between CD40 and CD40L reduces bone mineral density and increases osteoporosis risk in women. Osteoporos Int. 2011;22(5):1451–1458.
  • Wang YJ, Liu XJ, Dang MM, et al. Effects of mTOR-Cdc42 signaling pathway on phagocytosis of alveolar macrophages in chronic obstructive pulmonary disease mice. Zhonghua Yi Xue Za Zhi. 2016;96(46):3745–3750.
  • Xu S, Zhang B, Zhu Y, et al. miR-194 functions as a novel modulator of cellular senescence in mouse embryonic fibroblasts. Cell Biol Int. 2017;41(3):249–257.
  • Zhou T, Zhong Y, Hu Y, et al. PM(2.5) downregulates miR-194-3p and accelerates apoptosis in cigarette-inflamed bronchial epithelium by targeting death-associated protein kinase 1. Int J Chron Obstruct Pulmon Dis. 2018;13:2339–2349.
  • Abuduaini R, Miao X, Xu J, et al. MicroRNA-194-3p inhibits the metastatic biological behaviors of spinal osteosarcoma cells by the repression of matrix metallopeptidase 9. Int J Clin Exp Pathol. 2018;11(11):5257–5264.
  • Xu Z, Guo B, Chang P, et al. The Differential Expression of miRNAs and a preliminary study on the mechanism of miR-194-3p in keloids. Biomed Res Int. 2019;2019:8214923.
  • Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9(Suppl1):S1.
  • Weitzmann MN, Pacifici R. T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann N Y Acad Sci. 2007;1116:360–375.
  • Yao Z, Getting SJ, Locke IC. Regulation of TNF-induced osteoclast differentiation. Cells. 2021;11(1):89.
  • Yu T, You X, Zhou H, et al. p53 plays a central role in the development of osteoporosis. Aging. 2020;12(11):10473–10487.
  • Liu W, Qi M, Konermann A, et al. The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells. Aging. 2015;7(3):205–218.
  • Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23(48):7906–7909.
  • Geraghty P, Hardigan A, Foronjy RF. Cigarette smoke activates the proto-oncogene c-src to promote airway inflammation and lung tissue destruction. Am J Respir Cell Mol Biol. 2014;50(3):559–570.
  • Hannon RA, Clack G, Rimmer M, et al. Effects of the Src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: a randomized, double-blind, placebo-controlled, multiple-ascending-dose phase I trial. J Bone Miner Res. 2010;25(3):463–471.
  • Thaler R, Zwerina J, Rumpler M, et al. Homocysteine induces serum amyloid A3 in osteoblasts via unlocking RGD-motifs in collagen. FASEB J. 2013;27(2):446–463.
  • Csete D, Simon E, Alatshan A, et al. Hematopoietic or osteoclast-specific deletion of Syk leads to increased bone mass in experimental mice. Front Immunol. 2019;10:937.
  • Zhang Y, Zhang S, Wang Y, et al. ULK1 suppresses osteoclast differentiation and bone resorption via inhibiting Syk-JNK through DOK3. Oxid Med Cell Longev. 2021;2021:2896674.
  • Xie G, Liu W, Lian Z, et al. Spleen tyrosine kinase (SYK) inhibitor PRT062607 protects against ovariectomy-induced bone loss and breast cancer-induced bone destruction. Biochem Pharmacol. 2021;188:114579.
  • Barnes PJ. Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Pharmacol Rev. 2016;68(3):788–815.
  • Li S, Hui Y, Yuan J, et al. Syk-targeted, a new 3-arylbenzofuran derivative EAPP-2 blocks airway inflammation of asthma-COPD overlap in vivo and in vitro. J Inflamm Res. 2021;14:2173–2185.
  • Vrtačnik P, Zupan J, Mlakar V, et al. Epigenetic enzymes influenced by oxidative stress and hypoxia mimetic in osteoblasts are differentially expressed in patients with osteoporosis and osteoarthritis. Sci Rep. 2018;8(1):16215.
  • Young RP, Hopkins RJ, Christmas T, et al. COPD prevalence is increased in lung cancer, independent of age, sex and smoking history. Eur Respir J. 2009;34(2):380–386.
  • Fry JS, Hamling JS, Lee PN. Systematic review with meta-analysis of the epidemiological evidence relating FEV1 decline to lung cancer risk. BMC Cancer. 2012;12:498.
  • Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–245.
  • Zhai R, Yu X, Wei Y, et al. Smoking and smoking cessation in relation to the development of co-existing non-small cell lung cancer with chronic obstructive pulmonary disease. Int J Cancer. 2014;134(4):961–970.