358
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

NT-proBNP in Different Patient Groups of COPD: A Systematic Review and Meta-Analysis

, , ORCID Icon, , , , & ORCID Icon show all
Pages 811-825 | Received 31 Jan 2023, Accepted 29 Apr 2023, Published online: 10 May 2023

References

  • Yigit E, Manav A, Ture M, et al. The Impact of Septoplasty on Cardiopulmonary Functions in Patients With Nasal Septal Deviation: a Prospective Comprehensive Analysis of Echocardiographic Outcome and Serum N-Terminal Pro BNP Levels. J Craniofac Surg. 2022;33(1):35–40. doi:10.1097/SCS.0000000000007801
  • Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389(10082):1931–1940.
  • André S, Conde B, Fragoso E, et al. COPD and cardiovascular disease. Pulmonology. 2019;25(3):168–176.
  • Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339(5):321–328.
  • Salerno D, Marik PE. Brain natriuretic peptide measurement in pulmonary medicine. Respir Med. 2011;105(12):1770–1775.
  • McMurray JJ, Packer M, Desai AS, et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF). Eur J Heart Fail. 2013;15(9):1062–1073.
  • Eindhoven JA, van den Bosch AE, Boersma E, et al. The usefulness of brain natriuretic peptide in simple congenital heart disease - A systematic review. Cardiol Young. 2013;23(3):315–324.
  • Fu S, Ping P, Wang F, et al. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J Biol Eng. 2018;12:2.
  • Calzetta L, Orlandi A, Page C, et al. Brain natriuretic peptide: much more than a biomarker. Int J Cardiol. 2016;221:1031–1038.
  • Chaouat A, Naeije R, Weitzenblum E. Pulmonary hypertension in COPD. Eur Respir J. 2008;32(5):1371–1385.
  • Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.
  • Ozdemirel TS, Ulaşli SS, Yetiş B, et al. Effects of right ventricular dysfunction on exercise capacity and quality of life and associations with serum NT-proBNP levels in COPD: an observational study. Anadolu Kardiyol Derg. 2014;14(4):370–377.
  • Liu F, Zhang X, Du W, et al. Diagnosis values of IL-6 and IL-8 levels in serum and bronchoalveolar lavage fluid for invasive pulmonary aspergillosis in chronic obstructive pulmonary disease. J Investig Med. 2021;69(7):1344–1349.
  • Boschetto P, Campo I, Stendardo M, et al. Plasma sRAGE and N-(carboxymethyl) lysine in patients with CHF and/or COPD. Eur J Clin Invest. 2013;43(6):562–569.
  • Gulen ST, Eryilmaz U, Yilmaz M, et al. Left ventricular dysfunction in relation with systemic inflammation in chronic obstructive pulmonary disease patients. Korean J Intern Med. 2019;34(3):569–578.
  • Urban MH, Eickhoff P, Funk GC, et al. Increased brachial intima-media thickness is associated with circulating levels of asymmetric dimethylarginine in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:169–176.
  • Wang HY, Xu QF, Xiao Y, et al. Cardiac response and N-terminal-pro-brain natriuretic peptide kinetics during exercise in patients with COPD. Respir Care. 2011;56(6):796–799.
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
  • Antonelli M, Barbieri G, Donelli D. Effects of forest bathing (shinrin-yoku) on levels of cortisol as a stress biomarker: a systematic review and meta-analysis. Int J Biometeorol. 2019;63(8):1117–1134.
  • Liu Y, Liu X, Lin G, et al. Decreased CD34+ cell number is correlated with cardiac dysfunction in patients with acute exacerbation of COPD. Heart Lung Circ. 2014;23(9):875–882.
  • Huang YS, Feng YC, Zhang J, et al. Impact of chronic obstructive pulmonary diseases on left ventricular diastolic function in hospitalized elderly patients. Clin Interv Aging. 2015;10:81–87.
  • Weir-McCall JR, Liu-Shiu-Cheong PS, Struthers AD, et al. Disconnection of pulmonary and systemic arterial stiffness in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:1755–1765.
  • Cuthbert JJ, Kearsley JW, Kazmi S, et al. The impact of heart failure and chronic obstructive pulmonary disease on mortality in patients presenting with breathlessness. Clin Res Cardiol. 2019;108(2):185–193.
  • Patel AR, Kowlessar BS, Donaldson GC, et al. Cardiovascular risk, myocardial injury, and exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;188(9):1091–1099.
  • Jiang GY, Li Q, Lv YX. Short-term treatment of irbesartan and hydrochlorothiazide decreases plasma N-terminal pro-brain natriuretic peptide levels in subjects with acute exacerbations of COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:73–80.
  • Watz H, Waschki B, Boehme C, et al. Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity: a cross-sectional study. Am J Respir Crit Care Med. 2008;177(7):743–751.
  • Hwang YI, Park G, Kwon S, et al. Correlation between NT-proBNP and pulmonary arterial pressure in COPD patients. Tuberc Respir Dis. 2007;63:346.
  • Rubinsztajn R, Nasiłowski J, Przybyłowski T, et al. Przydatność oznaczania NT-proBNP w diagnostyce duszności u chorych na POChP.[Usefulness of NT-proBNP serum level in the diagnosis of dyspnea in COPD patients]. Pneumonol Alergol Pol. 2013;81(1):24–29. Polish.
  • Ghobadi H, Aslani MR, Hosseinian A, et al. The Correlation of Serum Brain Natriuretic Peptide and Interleukin-6 with Quality of Life Using the Chronic Obstructive Pulmonary Disease Assessment Test. Med Princ Pract. 2017;26(6):509–515.
  • Labaki WW, Xia M, Murray S, et al. NT-proBNP in stable COPD and future exacerbation risk: analysis of the SPIROMICS cohort. Respir Med. 2018;140:87–93.
  • Andrijevic L, Milutinov S, Andrijevic I, et al. Association Between the Inflammatory Biomarkers and Left Ventricular Systolic Dysfunction in Patients with Exacerbations of Chronic Obstructive Pulmonary Disease. Balkan Med J. 2017;34(3):226–231.
  • Spannella F, Giulietti F, Cocci G, et al. Acute Exacerbation of Chronic Obstructive Pulmonary Disease in Oldest Adults: predictors of In-Hospital Mortality and Need for Post-acute Care. J Am Med Dir Assoc. 2019;20(7):893–898.
  • Li H, Zeng Z, Cheng J, et al. Prognostic Role of NT-proBNP for in-Hospital and 1-Year Mortality in Patients with Acute Exacerbations of COPD. Int J Chron Obstruct Pulmon Dis. 2020;15:57–67.
  • Rutten FH, Moons KG, Cramer MJ, et al. Recognising heart failure in elderly patients with stable chronic obstructive pulmonary disease in primary care: cross sectional diagnostic study. BMJ. 2005;331(7529):1379.
  • Khaletskaya AI, Kuznetsov AN, Bolshova YV, et al. Cardiac Biomarkers in Patients with Isolated and Combined Course of Chronic Obstructive Pulmonary Disease and Chronic Heart Failure. Sovremennye tehn med. 2018;10:130.
  • Karoli N, Borodkin A, Rebrov A. Features of the clinic and diagnosis of chronic heart failure in patients with chronic obstructive pulmonary disease. Kardiologiia. 2019;59:47–55.
  • Losip A, Pop D, Sitar-Taut A, et al. NT-proBNP and Uric acid levels correlate in patients with COPD and heart failure. Acta Med Mediterranea. 2018;34(1):189.
  • Kovacs G, Avian A, Bachmaier G, et al. Severe Pulmonary Hypertension in COPD: impact on Survival and Diagnostic Approach. Chest. 2022;162(1):202–212.
  • Zuo H, Xie X, Peng J, et al. Predictive Value of Novel Inflammation-Based Biomarkers for Pulmonary Hypertension in the Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Anal Cell Pathol. 2019;2019:5189165.
  • Tian F, Song W, Wang L, et al. NT-pro BNP in AECOPD-PH: old biomarker, new insights-based on a large retrospective case-controlled study. Respir Res. 2021;22(1):321.
  • Marcun R, Stankovic I, Vidakovic R, et al. Prognostic implications of heart failure with preserved ejection fraction in patients with an exacerbation of chronic obstructive pulmonary disease. Intern Emerg Med. 2016;11(4):519–527.
  • Koliev V, Sarapulova I, Ryabova L. Diagnosis of chronic heart failure in patients with chronic obstructive pulmonary disease. Kazan Medical Journal. 2019;100:530–536.
  • Vyshnyvetskyy I, Kholopov L, Batashova-Halynska V. Clinical characteristics of the respiratory and cardiovascular systems in patients with combination of chronic obstructive pulmonary disease and heart failure. Zaporozhye Med J. 2017;1:65.
  • Hilde JM, Skjørten I, Grøtta OJ, et al. Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J Am Coll Cardiol. 2013;62(12):1103–1111.
  • Nasir SA, Singh S, Fotedar M, et al. Echocardiographic Evaluation of Right Ventricular Function and its Role in the Prognosis of Chronic Obstructive Pulmonary Disease. J Cardiovasc Echogr. 2020;30(3):125–130.
  • Buchan A, Bennett R, Coad A, et al. The role of cardiac biomarkers for predicting left ventricular dysfunction and cardiovascular mortality in acute exacerbations of COPD. Open Heart. 2015;2(1):e000052.
  • Hall C. NT-ProBNP: the mechanism behind the marker. J Card Fail. 2005;11(5 Suppl):S81–83.
  • Hopkins WE, Chen Z, Fukagawa NK, et al. Increased atrial and brain natriuretic peptides in adults with cyanotic congenital heart disease: enhanced understanding of the relationship between hypoxia and natriuretic peptide secretion. Circulation. 2004;109(23):2872–2877.
  • Casals G, Ros J, Sionis A, et al. Hypoxia induces B-type natriuretic peptide release in cell lines derived from human cardiomyocytes. Am J Physiol Heart Circ Physiol. 2009;297(2):H550–555.
  • Zysman M, Deslee G, Perez T, et al. Burden and Characteristics of Severe Chronic Hypoxemia in a Real-World Cohort of Subjects with COPD. Int J Chron Obstruct Pulmon Dis. 2021;16:1275–1284.
  • Ma KK, Ogawa T, de Bold AJ. Selective upregulation of cardiac brain natriuretic peptide at the transcriptional and translational levels by pro-inflammatory cytokines and by conditioned medium derived from mixed lymphocyte reactions via p38 MAP kinase. J Mol Cell Cardiol. 2004;36(4):505–513.
  • Shyam Prasad Shetty B, Chaya SK, Kumar VS, et al. Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) Are Differentially Elevated in Tobacco Smoke Associated COPD and Biomass Smoke Associated COPD. Toxics. 2021;9(4):543.
  • Ko FW, Chan KP, Hui DS, et al. Acute exacerbation of COPD. Respirology. 2016;21(7):1152–1165.
  • Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin Chest Med. 2020;41(3):421–438.
  • Hillas G, Perlikos F, Tzanakis N. Acute exacerbation of COPD: is it the “stroke of the lungs”? Int J Chron Obstruct Pulmon Dis. 2016;11:1579–1586.
  • McDonald MN, Wouters EFM, Rutten E, et al. It’s more than low BMI: prevalence of cachexia and associated mortality in COPD. Respir Res. 2019;20(1):100.
  • Pavasini R, Tavazzi G, Biscaglia S, et al. Amino terminal pro brain natriuretic peptide predicts all-cause mortality in patients with chronic obstructive pulmonary disease: systematic review and meta-analysis. Chron Respir Dis. 2017;14(2):117–126.
  • Chang CL, Robinson SC, Mills GD, et al. Biochemical markers of cardiac dysfunction predict mortality in acute exacerbations of COPD. Thorax. 2011;66(9):764–768.
  • McCrory DC, Coeytaux RR, Schmit KM, et al. AHRQ Comparative Effectiveness Reviews. Pulmonary Arterial Hypertension: Screening, Management, and Treatment. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013.
  • Cao Z, Jia Y, Zhu B. NT-proBNP as Diagnostic Biomarkers for Cardiac Dysfunction in Both Clinical and Forensic Medicine. Int J Mol Sci. 2019;20:548.
  • Karoli NA, Borodkin AV, Kosheleva NA, et al. Факторы риска развития неблагоприятных исходов у пациентов с хронической обструктивной болезнью легких и хронической сердечной недостаточностью[Prognostic markers for the development of adverse outcomes in patients with chronic obstructive pulmonary disease and chronic heart failure]. Kardiologiia. 2018;58(Suppl 9):39–47. Russian.