129
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Clinically Important Deterioration (CID) and Ageing in COPD: A Systematic Review and Meta-Regression Analysis According to PRISMA Statement

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 2225-2243 | Received 15 Jun 2023, Accepted 01 Oct 2023, Published online: 10 Oct 2023

References

  • 2023 GOLD report - global initiative for chronic obstructive lung disease - GOLD. Available from: https://goldcopd.org/2023-gold-report-2/. Accessed April 14, 2023.
  • Singh D, Maleki-Yazdi MR, Tombs L, Iqbal A, Fahy WA, Naya I. Prevention of clinically important deteriorations in COPD with umeclidinium/vilanterol. Int J COPD. 2016;11(1). doi:10.2147/COPD.S101612
  • Cazzola M, Matera MG. Clinically important deterioration: a composite tool for managing patients with COPD. Respir Med. 2022;205. doi:10.1016/j.rmed.2022.107054
  • O T, N K, T M, S S, H T, M M. Longitudinal deteriorations in patient reported outcomes in patients with COPD. Respir Med. 2007;101(1):1.
  • Singh D, Criner GJ, Naya I, et al. Measuring disease activity in COPD: is clinically important deterioration the answer? Respir Res. 2020;21(1). doi:10.1186/s12931-020-01387-z
  • Naya I, Compton C, Ismaila AS, et al. Preventing clinically important deterioration with single-inhaler triple therapy in COPD. ERJ Open Res. 2018;4(4):00047–2018. doi:10.1183/23120541.00047-2018
  • Anzueto AR, Vogelmeier CF, Kostikas K, et al. The effect of indacaterol/glycopyrronium versus tiotropium or salmeterol/fluticasone on the prevention of clinically important deterioration in COPD. Int J COPD. 2017;2017:12–1325. doi:10.2147/COPD.S133307
  • Vestbo J, Edwards LD, Scanlon PD, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med. 2011;365(13):1184–1192. doi:10.1056/nejmoa1105482
  • Rosso A, Egervall K, Elmståhl S. Annual decline rate in FEV1s in community-dwelling older adults diagnosed with mild to moderate COPD. NPJ Prim Care Respir Med. 2022;32(1). doi:10.1038/s41533-022-00292-w
  • Donohue JF. Minimal clinically important differences in COPD lung function. COPD. 2005;2(1):111–124. doi:10.1081/COPD-200053377
  • Fletcher C, Peto R. The natural history of chronic airflow obstruction. Bull Int Union Tuberc. 1978;53(2):1.
  • Kim SJ, Lee J, Park YS, et al. Age-related annual decline of lung function in patients with COPD. Int J COPD. 2015:11. doi:10.2147/COPD.S95028
  • Thomas ET, Guppy M, Straus SE, Bell KJL, Glasziou P. Rate of normal lung function decline in ageing adults: a systematic review of prospective cohort studies. BMJ Open. 2019;9(6):e028150. doi:10.1136/bmjopen-2018-028150
  • Hurst JR, Han MLK, Singh B, et al. Prognostic risk factors for moderate-to-severe exacerbations in patients with chronic obstructive pulmonary disease: a systematic literature review. Respir Res. 2022;23(1). doi:10.1186/s12931-022-02123-5
  • Spannella F, Giulietti F, Cocci G, et al. Acute exacerbation of chronic obstructive pulmonary disease in oldest adults: predictors of in-hospital mortality and need for post-acute care. J Am Med Dir Assoc. 2019;20(7):893–898. doi:10.1016/j.jamda.2019.01.125
  • Cho WK, Lee CG, Kim LK. COPD as a disease of immunosenescence. Yonsei Med J. 2019;60(5):407. doi:10.3349/ymj.2019.60.5.407
  • Cavaillès A, Brinchault-Rabin G, Dixmier A, et al. Comorbidities of COPD. Eur Respir Rev. 2013;22(130):454–475. doi:10.1183/09059180.00008612
  • Mülazimoglu DD, Ayöz S. Are comorbidities related to frequent severe exacerbations of COPD? Eur Respir J. 2019;54:1.
  • Martinez CH, Diaz AA, Parulekar AD, et al. Age-related differences in health-related quality of life in COPD: an analysis of the COPDGene and SPIROMICS Cohorts. Chest. 2016;149(4):927–935. doi:10.1016/j.chest.2015.11.025
  • Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: r as a computational back-end. J Stat Softw. 2012;49. doi:10.18637/jss.v049.i05
  • Viechtbauer W, Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1–48. doi:10.18637/jss.v036.i03
  • Haggins GSR. Cochrane handbook for systematic reviews of interventions version 5.1.0. Cochrane Database Syst Rev. 2020;2020(2):1.
  • Borenstein M, Hedges LV. Introduction to Meta‐Analysis; 2009.
  • Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev Esp Nutr Hum Diet. 2016;20(2). doi:10.1186/2046-4053-4-1
  • Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71
  • Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak. 2007;7:16. doi:10.1186/1472-6947-7-16
  • Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12. doi:10.1016/0197-2456(95)00134-4
  • Pedder H, Sarri G, Keeney E, Nunes V, Dias S. Data extraction for complex meta-analysis (DECiMAL) guide. Syst Rev. 2016;5(1):212. doi:10.1186/s13643-016-0368-4
  • Gianinazzi ME, Rueegg CS, Zimmerman K, Kuehni CE, Michel G. Swiss paediatric oncology G. Intra-rater and inter-rater reliability of a medical record abstraction study on transition of care after childhood cancer. PLoS One. 2015;10(5):e0124290. doi:10.1371/journal.pone.0124290
  • Sterne JAC, Gavaghan D, Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000;53(11):1119–1129. doi:10.1016/S0895-4356(00)00242-0
  • Sterne JAC, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54(10):1046–1055. doi:10.1016/S0895-4356(01)00377-8
  • Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Br Med J. 1997;315(7109):629–634. doi:10.1136/bmj.315.7109.629
  • 10.4.3.1 Recommendations on testing for funnel plot asymmetry. Available from: https://handbook-5-1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm. Accessed January 2, 2022.
  • Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64(4):383–394. doi:10.1016/j.jclinepi.2010.04.026
  • Han MK, Criner GJ, Dransfield MT, et al. Prognostic value of clinically important deterioration in COPD: impact trial analysis. ERJ Open Res. 2021;7(1):00663–2020. doi:10.1183/23120541.00663-2020
  • Rabe KF, Chalmers JD, Miravitlles M, et al. Tiotropium/olodaterol delays clinically important deterioration compared with tiotropium monotherapy in patients with early COPD: a post hoc analysis of the TONADO® trials. Adv Ther. 2021;38(1):579–593. doi:10.1007/s12325-020-01528-2
  • Kerwin EM, Murray L, Niu X, Dembek C. Clinically important deterioration among patients with chronic obstructive pulmonary disease (COPD) treated with nebulized glycopyrrolate: a post hoc analysis of pooled data from two randomized, double-blind, placebo-controlled studies. Int J COPD. 2020;15. doi:10.2147/COPD.S267249
  • Rabe KF, Halpin DMG, Han MK, et al. Composite endpoints in COPD: clinically important deterioration in the UPLIFT trial. Respir Res. 2020;21(1). doi:10.1186/s12931-020-01431-y
  • Zheng J, Xu JF, Jenkins M, Assam PN, Wang L, Lipworth BJ. Glycopyrrolate/formoterol fumarate metered dose inhaler for maintenance-naïve patients with chronic obstructive pulmonary disease: a post-hoc analysis of the randomized PINNACLE trials. Respir Res. 2020;21(1). doi:10.1186/s12931-020-1332-3
  • Chen R, Zhong N, Wang HY, et al. Efficacy and safety of glycopyrrolate/formoterol fumarate metered dose inhaler (GFF MDI) formulated using co-suspension delivery technology in Chinese patients with COPD. Int J COPD. 2020;15. doi:10.2147/COPD.S223638
  • Bafadhel M, Singh D, Jenkins C, et al. Reduced risk of clinically important deteriorations by ICS in COPD is eosinophil dependent: a pooled post-hoc analysis. Respir Res. 2020;21(1). doi:10.1186/s12931-020-1280-y
  • Maltais F, Bjermer L, Kerwin EM, et al. Efficacy of umeclidinium/vilanterol versus umeclidinium and salmeterol monotherapies in symptomatic patients with COPD not receiving inhaled corticosteroids: the EMAX randomised trial. Respir Res. 2019;20(1). doi:10.1186/s12931-019-1193-9
  • Singh D, Fabbri LM, Vezzoli S, Petruzzelli S, Papi A. Extrafine triple therapy delays COPD clinically important deterioration vs ICS/LABA, LAMA, or LABA/LAMA. Int J COPD. 2019;14. doi:10.2147/COPD.S196383
  • Naya IP, Tombs L, Lipson DA, Compton C. Preventing clinically important deterioration of COPD with addition of umeclidinium to inhaled corticosteroid/long-acting β2-agonist therapy: an integrated post hoc analysis. Adv Ther. 2018;35(10):1626–1638. doi:10.1007/s12325-018-0771-4
  • Durzo A, Bader G, Shen S, Goyal P, Altman P. Comparison of glycopyrronium versus tiotropium on the time to clinically important deteriorations in patients with COPD: a post-hoc analysis of randomized trials. NPJ Prim Care Respir Med. 2018;28(1). doi:10.1038/s41533-018-0084-8
  • Anzueto AR, Kostikas K, Mezzi K, et al. Indacaterol/glycopyrronium versus salmeterol/fluticasone in the prevention of clinically important deterioration in COPD: results from the FLAME study. Respir Res. 2018;19(1). doi:10.1186/s12931-018-0830-z
  • Singh D, D’Urzo AD, Chuecos F, Muñoz A, Garcia Gil E. Reduction in clinically important deterioration in chronic obstructive pulmonary disease with Aclidinium/formoterol. Respir Res. 2017;18(1). doi:10.1186/s12931-017-0583-0
  • Maleki-Yazdi MR, Singh D, Anzueto A, Tombs L, Fahy WA, Naya I. Assessing short-term deterioration in maintenance-naïve patients with COPD receiving umeclidinium/vilanterol and tiotropium: a pooled analysis of three randomized trials. Adv Ther. 2017;33(12):2188–2199. doi:10.1007/s12325-016-0430-6
  • Bateman ED, Ferguson GT, Barnes N, et al. Dual bronchodilation with QVA149 versus single bronchodilator therapy: the SHINE study. Eur Respir J. 2013;42(6):1484–1494. doi:10.1183/09031936.00200212
  • Maleki-Yazdi MR, Kaelin T, Richard N, Zvarich M, Church A. Efficacy and safety of umeclidinium/vilanterol 62.5/25 mcg and tiotropium 18 mcg in chronic obstructive pulmonary disease: results of a 24-week, randomized, controlled trial. Respir Med. 2014;108(12):1752–1760. doi:10.1016/j.rmed.2014.10.002
  • Lipworth BJ, Collier DJ, Gon Y. Improved lung function and patient-reported outcomes with co-suspension delivery technology glycopyrrolate/formoterol fumarate metered dose inhaler in COPD: a randomized phase III study conducted in Asia, Europe, and the USA. Int J Chron Obstruct Pulmon Dis. 2018;13:2969–2984. doi:10.2147/COPD.S171835
  • Vestbo J, Papi A, Corradi M, et al. Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): a double-blind, parallel group, randomised controlled trial. Lancet. 2017;389(10082):1919–1929. doi:10.1016/S0140-6736(17)30188-5
  • Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol. 2011;64(12):1283–1293. doi:10.1016/J.JCLINEPI.2011.01.012
  • Calzetta L, Cazzola M, Matera MG, Rogliani P. Adding a LAMA to ICS/LABA therapy: a meta-analysis of triple combination therapy in COPD. Chest. 2019;155(4):758–770. doi:10.1016/j.chest.2018.12.016
  • Puhan MA, Garcia-Aymerich J, Frey M, et al. Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. Lancet. 2009;374(9691):704–711. doi:10.1016/S0140-6736(09)61301-5
  • Puhan MA, Hansel NN, Sobradillo P, et al. Large-scale international validation of the ADO index in subjects with COPD: an individual subject data analysis of 10 cohorts. BMJ Open. 2012;2(6):e002152. doi:10.1136/bmjopen-2012-002152
  • Naya IP, Tombs L, Muellerova H, Compton C, Jones PW. Long-term outcomes following first short-term clinically important deterioration in COPD. Respir Res. 2018;19(1). doi:10.1186/s12931-018-0928-3
  • James GD, Donaldson GC, Wedzicha JA, Nazareth I. Trends in management and outcomes of COPD patients in primary care, 2000–2009: a retrospective cohort study. NPJ Prim Care Respir Med. 2014;24. doi:10.1038/npjpcrm.2014.15
  • Matera M, Calzetta L, Rogliani P, Cesario A, Cazzola M. New treatments for COPD in the elderly. Curr Pharm Des. 2014;20(38):5968–5982. doi:10.2174/1381612820666140314154331
  • Matera MG, Calzetta L, Rinaldi B, Cazzola M. Treatment of COPD: moving beyond the lungs. Curr Opin Pharmacol. 2012;12(3):315–322. doi:10.1016/j.coph.2012.04.001
  • Cazzola M, Calzetta L, Rinaldi B, et al. Management of chronic obstructive pulmonary disease in patients with cardiovascular diseases. Drugs. 2017;77(7):721–732. doi:10.1007/s40265-017-0731-3
  • Rogliani P, Cavalli F, Chetta A, Cazzola M, Calzetta L. Potential drawbacks of ICS/LABA/LAMA triple fixed-dose combination therapy in the treatment of asthma: a quantitative synthesis of safety profile. J Asthma Allergy. 2022;15:565–577. doi:10.2147/JAA.S283489
  • Curran-Everett D, Milgrom H. Post-hoc data analysis: benefits and limitations. Curr Opin Allergy Clin Immunol. 2013;13(3):223–224. doi:10.1097/ACI.0b013e3283609831