326
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Cigarette Smoking, and Blood Monocyte Count Correlate with Chronic Lung Injuries and Mortality

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 431-446 | Received 22 Nov 2022, Accepted 27 Mar 2023, Published online: 01 Apr 2023

References

  • CDC. Health effects of cigarette smoking; 2022. Available from: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/effects_cig_smoking/index.htm#references. Accessed August 24, 2022.
  • Baumgartner KB, Samet JM, Stidley CA, Colby TV, Waldron JA. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997;155(1):242–248. doi:10.1164/ajrccm.155.1.9001319
  • Bilello KS, Murin S, Matthay RA. Epidemiology, etiology, and prevention of lung cancer. Clin Chest Med. 2002;23(1):1–25. doi:10.1016/s0272-5231(03)00057-1
  • Forey BA, Thornton AJ, Lee PN. Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema. BMC Pulm Med. 2011;11:36. doi:10.1186/1471-2466-11-36
  • Lederer DJ, Enright PL, Kawut SM, et al. Cigarette smoking is associated with subclinical parenchymal lung disease: the multi-ethnic study of atherosclerosis (Mesa)-lung study. Am J Respir Crit Care Med. 2009;180(5):407–414. doi:10.1164/rccm.200812-1966OC
  • Beghe B, Cerri S, Fabbri LM, Marchioni A. COPD, pulmonary fibrosis and ILAs in aging smokers: the paradox of striking different responses to the major risk factors. Int J Mol Sci. 2021;22(17). doi:10.3390/ijms22179292
  • Ridge CA, McErlean AM, Ginsberg MS. Epidemiology of lung cancer. Semin Intervent Radiol. 2013;30(2):93–98. doi:10.1055/s-0033-1342949
  • Bergmann S, Siekmeier R, Mix C, Jaross W. Even moderate cigarette smoking influences the pattern of circulating monocytes and the concentration of sICAM-1. Respir Physiol. 1998;114(3):269–275. doi:10.1016/s0034-5687(98)00098-x
  • Pedersen KM, Colak Y, Ellervik C, Hasselbalch HC, Bojesen SE, Nordestgaard BG. Smoking and increased white and red blood cells. Arterioscler Thromb Vasc Biol. 2019;39(5):965–977. doi:10.1161/ATVBAHA.118.312338
  • Smith CJ, Kluck LA, Ruan GJ, et al. Leukocytosis and tobacco use: an observational study of asymptomatic leukocytosis. Am J Med. 2021;134(1):e31–e35. doi:10.1016/j.amjmed.2020.06.014
  • Achaiah A, Lyon P, Fraser E, et al. Increased monocyte level is a risk factor for radiological progression in patients with early fibrotic interstitial lung abnormality. ERJ Open Res. 2022;8(3). doi:10.1183/23120541.00226-2022
  • Achaiah A, Rathnapala A, Pereira A, et al. Monocyte and neutrophil levels are potentially linked to progression to IPF for patients with indeterminate UIP CT pattern. BMJ Open Respir Res. 2021;8(1). doi:10.1136/bmjresp-2021-000899
  • Cornwell WD, Kim V, Fan X, et al. Activation and polarization of circulating monocytes in severe chronic obstructive pulmonary disease. BMC Pulm Med. 2018;18(1):101. doi:10.1186/s12890-018-0664-y
  • Kapellos TS, Bonaguro L, Gemund I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035. doi:10.3389/fimmu.2019.02035
  • Kim JS, Axelsson GT, Moll M, et al. Associations of monocyte count and other immune cell types with interstitial lung abnormalities. Am J Respir Crit Care Med. 2022;205(7):795–805. doi:10.1164/rccm.202108-1967OC
  • Kreuter M, Lee JS, Tzouvelekis A, et al. Monocyte count as a prognostic biomarker in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2021;204(1):74–81. doi:10.1164/rccm.202003-0669OC
  • Scott MKD, Quinn K, Li Q, et al. Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective, multicentre cohort study. Lancet Respir Med. 2019;7(6):497–508. doi:10.1016/S2213-2600(18)30508-3
  • Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity of monocytes. Immunity. 2018;49(4):595–613. doi:10.1016/j.immuni.2018.10.005
  • Fingerle G, Pforte A, Passlick B, Blumenstein M, Strobel M, Ziegler-Heitbrock HW. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients. Blood. 1993;82(10):3170–3176.
  • Nockher WA, Scherberich JE. Expanded CD14+ CD16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis. Infect Immun. 1998;66(6):2782–2790. doi:10.1128/IAI.66.6.2782-2790.1998
  • Ziegler-Heitbrock L. Blood monocytes and their subsets: established features and open questions. Front Immunol. 2015;6:423. doi:10.3389/fimmu.2015.00423
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–969. doi:10.1038/nri2448
  • Lugg ST, Scott A, Parekh D, Naidu B, Thickett DR. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax. 2022;77(1):94–101. doi:10.1136/thoraxjnl-2020-216296
  • Elisia I, Lam V, Cho B, et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep. 2020;10(1):19480. doi:10.1038/s41598-020-76556-7
  • Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: a mechanistic review. Int J Environ Res Public Health. 2018;15(5). doi:10.3390/ijerph15051033
  • Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–692. doi:10.1146/annurev.immunol.021908.132557
  • Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71–82.
  • Hoogsteden HC, van Dongen JJ, van Hal PT, Delahaye M, Hop W, Hilvering C. Phenotype of blood monocytes and alveolar macrophages in interstitial lung disease. Chest. 1989;95(3):574–577. doi:10.1378/chest.95.3.574
  • Tacke F, Randolph GJ. Migratory fate and differentiation of blood monocyte subsets. Immunobiology. 2006;211(6–8):609–618. doi:10.1016/j.imbio.2006.05.025
  • Barman PK, Shin JE, Lewis SA, et al. Production of MHCII-expressing classical monocytes increases during aging in mice and humans. Aging Cell. 2022;21(10):e13701. doi:10.1111/acel.13701
  • Murray MA, Chotirmall SH. The impact of immunosenescence on pulmonary disease. Mediators Inflamm. 2015;2015:692546. doi:10.1155/2015/692546
  • Puissant-Lubrano B, Apoil PA, Guedj K, et al. Distinct effect of age, sex, and CMV seropositivity on dendritic cells and monocytes in human blood. Immunol Cell Biol. 2018;96(1):114–120. doi:10.1111/imcb.1004
  • Fernandez IE, Kass DJ. Do circulating monocytes promote and predict idiopathic pulmonary fibrosis progression? Am J Respir Crit Care Med. 2021;204(1):9–11. doi:10.1164/rccm.202101-0207ED
  • Oliveira da Silva C, Monte-Alto-Costa A, Renovato-Martins M, et al. Time course of the phenotype of blood and bone marrow monocytes and macrophages in the lung after cigarette smoke exposure in vivo. Int J Mol Sci. 2017;18(9). doi:10.3390/ijms18091940
  • Sangani RG, Deepak V, Ghio AJ, et al. Interstitial lung abnormalities and interstitial lung diseases associated with cigarette smoking in a rural cohort undergoing surgical resection. BMC Pulm Med. 2022;22(1):172. doi:10.1186/s12890-022-01961-9
  • Prevention WDoT. Smoking Cessation; 2022. Available from: https://dhhr.wv.gov/wvdtp/cessation/pages/default.aspx. Accessed September 1, 2022.
  • Cardarelli K, Westneat S, Dunfee M, May B, Schoenberg N, Browning S. Persistent disparities in smoking among rural Appalachians: evidence from the mountain air project. BMC Public Health. 2021;21(1):270. doi:10.1186/s12889-021-10334-6
  • Gouveia TDS, Trevisan IB, Santos CP, et al. Smoking history: relationships with inflammatory markers, metabolic markers, body composition, muscle strength, and cardiopulmonary capacity in current smokers. J Bras Pneumol. 2020;46(5):e20180353. doi:10.36416/1806-3756/e20180353
  • Terashima T, Wiggs B, English D, Hogg JC, van Eeden SF. The effect of cigarette smoking on the bone marrow. Am J Respir Crit Care Med. 1997;155(3):1021–1026. doi:10.1164/ajrccm.155.3.9116981
  • Goto Y, Ishii H, Hogg JC, et al. Particulate matter air pollution stimulates monocyte release from the bone marrow. Am J Respir Crit Care Med. 2004;170(8):891–897. doi:10.1164/rccm.200402-235OC
  • Nemmar A, Inuwa IM. Diesel exhaust particles in blood trigger systemic and pulmonary morphological alterations. Toxicol Lett. 2008;176(1):20–30. doi:10.1016/j.toxlet.2007.09.006
  • Su TC, Hwang JJ, Yang YR, Chan CC. Association between long-term exposure to traffic-related air pollution and inflammatory and thrombotic markers in middle-aged adults. Epidemiology. 2017;28(Suppl 1):S74–S81. doi:10.1097/EDE.0000000000000715
  • Fessler MB, Carnes MU, Salo PM, et al. House dust endotoxin and peripheral leukocyte counts: results from two large epidemiologic studies. Environ Health Perspect. 2017;125(5):057010. doi:10.1289/EHP661
  • Karakaya A, Yucesoy B, Sardas OS. An immunological study on workers occupationally exposed to cadmium. Hum Exp Toxicol. 1994;13(2):73–75. doi:10.1177/096032719401300202
  • Byrne AJ, Powell JE, O’Sullivan BJ, et al. Dynamics of human monocytes and airway macrophages during healthy aging and after transplant. J Exp Med. 2020;217(3). doi:10.1084/jem.20191236
  • Gibbings SL, Goyal R, Desch AN, et al. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood. 2015;126(11):1357–1366. doi:10.1182/blood-2015-01-624809
  • Misharin AV, Morales-Nebreda L, Reyfman PA, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017;214(8):2387–2404. doi:10.1084/jem.20162152
  • Klotz O. Pulmonary anthracosis -a community disease. Am J Public Health. 1914;4(10):887–916. doi:10.2105/ajph.4.10.887
  • Pinsky PF, Kramer BS. Lung cancer risk and demographic characteristics of current 20–29 pack-year smokers: implications for screening. J Natl Cancer Inst. 2015;107(11). doi:10.1093/jnci/djv226
  • Force US, Krist AH, Davidson KW, et al. Screening for lung cancer: US preventive services task force recommendation statement. JAMA. 2021;325(10):962–970. doi:10.1001/jama.2021.1117
  • Bellou V, Belbasis L, Evangelou E. Tobacco smoking and risk for pulmonary fibrosis: a prospective cohort study from the UK biobank. Chest. 2021;160(3):983–993. doi:10.1016/j.chest.2021.04.035
  • Weiss W. Smoking and pulmonary fibrosis. J Occup Med. 1988;30(1):33–39.
  • Fraser E, Denney L, Antanaviciute A, et al. Multi-modal characterization of monocytes in idiopathic pulmonary fibrosis reveals a primed type I interferon immune phenotype. Front Immunol. 2021;12:623430. doi:10.3389/fimmu.2021.623430
  • Teoh AKY, Jo HE, Chambers DC, et al. Blood monocyte counts as a potential prognostic marker for idiopathic pulmonary fibrosis: analysis from the Australian IPF registry. Eur Respir J. 2020;55(4). doi:10.1183/13993003.01855-2019
  • Osaka D, Shibata Y, Abe S, et al. Relationship between habit of cigarette smoking and airflow limitation in healthy Japanese individuals: the Takahata study. Intern Med. 2010;49(15):1489–1499. doi:10.2169/internalmedicine.49.3364
  • McKeever T, Saha S, Fogarty AW. The association between systemic inflammatory cellular levels and lung function: a population-based study. PLoS One. 2011;6(7):e21593. doi:10.1371/journal.pone.0021593
  • Wu X, Wang C, Li H, et al. Circulating white blood cells and lung function impairment: the observational studies and Mendelian randomization analysis. Ann Med. 2021;53(1):1118–1128. doi:10.1080/07853890.2021.1948603
  • Lubin JH, Caporaso NE. Misunderstandings in the misconception on the use of pack-years in analysis of smoking. Br J Cancer. 2013;108(5):1218–1220. doi:10.1038/bjc.2013.76
  • Peto J. That the effects of smoking should be measured in pack-years: misconceptions 4. Br J Cancer. 2012;107(3):406–407. doi:10.1038/bjc.2012.97
  • Pleasants RA, Rivera MP, Tilley SL, Bhatt SP. Both duration and pack-years of tobacco smoking should be used for clinical practice and research. Ann Am Thorac Soc. 2020;17(7):804–806. doi:10.1513/AnnalsATS.202002-133VP
  • Patel AA, Yona S. Inherited and environmental factors influence human monocyte heterogeneity. Front Immunol. 2019;10:2581. doi:10.3389/fimmu.2019.02581
  • Barnes PJ. Sex differences in chronic obstructive pulmonary disease mechanisms. Am J Respir Crit Care Med. 2016;193(8):813–814. doi:10.1164/rccm.201512-2379ED
  • Radkiewicz C, Dickman PW, Johansson ALV, Wagenius G, Edgren G, Lambe M. Sex and survival in non-small cell lung cancer: a nationwide cohort study. PLoS One. 2019;14(6):e0219206. doi:10.1371/journal.pone.0219206
  • Hlapcic I, Dugac AV, Popovic-Grle S, et al. Influence of disease severity, smoking status and therapy regimes on leukocyte subsets and their ratios in stable chronic obstructive pulmonary disease. Arch Med Sci. 2022;18(3):672–681. doi:10.5114/aoms.2020.100720
  • Yang J, Qiao M, Li Y, et al. Expansion of a population of large monocytes (atypical monocytes) in peripheral blood of patients with acute exacerbations of chronic obstructive pulmonary diseases. Mediators Inflamm. 2018;2018:9031452. doi:10.1155/2018/9031452
  • Hai Y, Chen N, Wu W, et al. High postoperative monocyte indicates inferior Clinicopathological characteristics and worse prognosis in lung adenocarcinoma or squamous cell carcinoma after lobectomy. BMC Cancer. 2018;18(1):1011. doi:10.1186/s12885-018-4909-1
  • Kumagai S, Marumo S, Shoji T, et al. Prognostic impact of preoperative monocyte counts in patients with resected lung adenocarcinoma. Lung Cancer. 2014;85(3):457–464. doi:10.1016/j.lungcan.2014.06.015
  • Van Tiel E, Peeters PH, Smit HA, et al. Quitting smoking may restore hematological characteristics within five years. Ann Epidemiol. 2002;12(6):378–388. doi:10.1016/s1047-2797(01)00282-4
  • Leifert JA. Anaemia and cigarette smoking. Int J Lab Hematol. 2008;30(3):177–184. doi:10.1111/j.1751-553X.2008.01067.x
  • Spivak JL. Cancer-related anemia: its causes and characteristics. Semin Oncol. 1994;21(2 Suppl 3):3–8.
  • Caro JJ, Salas M, Ward A, Goss G. Anemia as an independent prognostic factor for survival in patients with cancer: a systemic, quantitative review. Cancer. 2001;91(12):2214–2221.
  • Gurun Kaya A, Ozyurek BA, Sahin Ozdemirel T, Oz M, Erdogan Y. Prognostic significance of red cell distribution width in idiopathic pulmonary fibrosis and combined pulmonary fibrosis emphysema. Med Princ Pract. 2021;30(2):154–159. doi:10.1159/000511106
  • Sarkar M, Rajta PN, Khatana J. Anemia in chronic obstructive pulmonary disease: prevalence, pathogenesis, and potential impact. Lung India. 2015;32(2):142–151. doi:10.4103/0970-2113.152626
  • Balasubramanian A, Putcha N, MacIntyre NR, et al. Diffusing capacity and mortality in chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2022. doi:10.1513/AnnalsATS.202203-226OC
  • Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431–440. doi:10.1164/rccm.201006-0894CI
  • Liber AC, Warner KE. Has underreporting of cigarette consumption changed over time? Estimates derived from US national health surveillance systems between 1965 and 2015. Am J Epidemiol. 2018;187(1):113–119. doi:10.1093/aje/kwx196
  • Anderson AE Jr., Hernandez JA, Eckert P, Foraker AG. Emphysema in lung macrosections correlated with smoking habits. Science. 1964;144(3621):1025–1026. doi:10.1126/science.144.3621.1025
  • Auerbach O, Hammond EC, Garfinkel L, Benante C. Relation of smoking and age to emphysema. Whole-lung section study. N Engl J Med. 1972;286(16):853–857. doi:10.1056/NEJM197204202861601
  • Gillooly M, Lamb D. Microscopic emphysema in relation to age and smoking habit. Thorax. 1993;48(5):491–495. doi:10.1136/thx.48.5.491