189
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Plasma miR-150-5p as a Biomarker for Chronic Obstructive Pulmonary Disease

ORCID Icon, , , & ORCID Icon
Pages 399-406 | Received 20 Dec 2022, Accepted 15 Mar 2023, Published online: 23 Mar 2023

References

  • Vestbo J, Hurd SS, Agustí AG, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Am J Resp Crit Care. 2013;187(4):347–365. doi:10.1164/rccm.201204-0596PP
  • Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. Plos Med. 2006;3(11):e442. doi:10.1371/journal.pmed.0030442
  • Hu H, Nie Z, Lu Y, et al. Circulating miR-125b but not miR-125a correlates with acute exacerbations of chronic obstructive pulmonary disease and the expressions of inflammatory cytokines. Medicine. 2017;96(51):e9059. doi:10.1097/MD.0000000000009059
  • Lareau SC, Fahy B, Meek P, Wang A. Chronic Obstructive Pulmonary Disease (COPD). Am J Resp Crit Care. 2019;199(1):P1–P2. doi:10.1164/rccm.1991P1
  • Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017;389(10082):1931–1940. doi:10.1016/S0140-6736(17)31222-9
  • Lin TL, Chen WW, Ding ZR, Wei SC, Huang ML, Li CH. Correlations between serum amyloid A, C‐reactive protein and clinical indices of patients with acutely exacerbated chronic obstructive pulmonary disease. J Clin Lab Anal. 2019;33(4):e22831. doi:10.1002/jcla.22831
  • Soler N, Ewig S, Torres A, Filella X, Gonzalez J, Zaubet A. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur Respir J. 1999;14(5):1015–1022. doi:10.1183/09031936.99.14510159
  • Farrell O. Plasma Extracellular Vesicle miRNAs Can Identify Lung Cancer, Current Smoking Status, and Stable COPD. Int J Mol Sci. 2021;22(11):5803. doi:10.3390/ijms22115803
  • Zhang J, Li S, Li L, et al. Exosome and Exosomal MicroRNA: trafficking, Sorting, and Function. Genomics Proteomics Bioinformatics. 2015;13(1):17–24. doi:10.1016/j.gpb.2015.02.001
  • Ezzie ME, Crawford M, Cho J, et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012;67(2):122–131. doi:10.1136/thoraxjnl-2011-200089
  • Wang J, Chen J, Sen S. MicroRNA as Biomarkers and Diagnostics. J Cell Physiol. 2016;231(1):25–30. doi:10.1002/jcp.25056
  • O’Leary L, Sevinc K, Papazoglou IM, et al. Airway smooth muscle inflammation is regulated by microRNA-145 in COPD. FEBS Lett. 2016;590(9):1324–1334. doi:10.1002/1873-3468.12168
  • Bartel DP. MicroRNAs: genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116(2):281–297. doi:10.1016/S0092-8674(04)00045-5
  • Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH, Zhao GF. Long non-coding RNA MALAT1 exacerbates acute respiratory distress syndrome by upregulating ICAM-1 expression via microRNA-150-5p downregulation. Aging. 2020;12(8):6570–6585. doi:10.18632/aging.102953
  • Chen X, Zeng K, Xu M, et al. SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis. 2018;9(10). doi:10.1038/s41419-018-0962-6
  • Kakan SS, Edman MC, Yao A, et al. Tear miRNAs Identified in a Murine Model of Sjögren’s Syndrome as Potential Diagnostic Biomarkers and Indicators of Disease Mechanism. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.833254
  • Chen J, Papp G, Póliska S, et al. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjögren’s syndrome. PLoS One. 2017;12(3):e0174585. doi:10.1371/journal.pone.0174585
  • Hosokawa K, Kajigaya S, Feng X, et al. A plasma microRNA signature as a biomarker for acquired aplastic anemia. Haematologica. 2017;102(1):69–78. doi:10.3324/haematol.2016.151076
  • Scrutinio D, Conserva F, Passantino A, Iacoviello M, Lagioia R, Gesualdo L. Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: a genome-wide prospective study. J Heart Lung Transplant. 2017;36(6):616–624. doi:10.1016/j.healun.2017.02.008
  • Zhu M, Ye L, Zhu G, et al. ROS-Responsive miR-150-5p Downregulation Contributes to Cigarette Smoke-Induced COPD via Targeting IRE1α. Oxid Med Cell Longev. 2022;2022:1–23. doi:10.1155/2022/5695005
  • Halpin DMG, Criner GJ, Papi A, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Resp Crit Care. 2021;203(1):24–36. doi:10.1164/rccm.202009-3533SO
  • Savarimuthu FS, Davidson MR, Tan ME, et al. MicroRNA-34c is associated with emphysema severity and modulates SERPINE1 expression. Bmc Genomics. 2014;15:88. doi:10.1186/1471-2164-15-88
  • Celli BR, Locantore N, Yates J, et al. Inflammatory Biomarkers Improve Clinical Prediction of Mortality in Chronic Obstructive Pulmonary Disease. Am J Resp Crit Care. 2012;185(10):1065–1072. doi:10.1164/rccm.201110-1792OC
  • Pattarayan D, Thimmulappa RK, Ravikumar V, Rajasekaran S. Diagnostic Potential of Extracellular MicroRNA in Respiratory Diseases. Clin Rev Allerg Immu. 2018;54(3):480–492. doi:10.1007/s12016-016-8589-9
  • Soeda S, Ohyashiki JH, Ohtsuki K, Umezu T, Setoguchi Y, Ohyashiki K. Clinical relevance of plasma miR-106b levels in patients with chronic obstructive pulmonary disease. Int J Mol Med. 2013;31(3):533–539. doi:10.3892/ijmm.2013.1251
  • Mizuno S, Bogaard HJ, Gomez-Arroyo J, et al. MicroRNA-199a-5p Is Associated With Hypoxia-Inducible Factor-1α Expression in Lungs From Patients With COPD. Chest. 2012;142(3):663–672. doi:10.1378/chest.11-2746
  • Hassan T, Carroll TP, Buckley PG, et al. miR-199a-5p Silencing Regulates the Unfolded Protein Response in Chronic Obstructive Pulmonary Disease and α1-Antitrypsin Deficiency. Am J Resp Crit Care. 2014;189(3):263–273. doi:10.1164/rccm.201306-1151OC
  • Christenson SA, Brandsma CA, Campbell JD, et al. miR-638 regulates gene expression networks associated with emphysematous lung destruction. Genome Med. 2013;5(12):114. doi:10.1186/gm519
  • Sato T, Liu X, Nelson A, et al. Reduced miR-146a Increases Prostaglandin E2 in Chronic Obstructive Pulmonary Disease Fibroblasts. Am J Resp Crit Care. 2010;182(8):1020–1029. doi:10.1164/rccm.201001-0055OC
  • Punga T, Panse R, Andersson M, Truffault F, Berrih Aknin S, Punga AR. Circulating miRNAs in myasthenia gravis: miR‐150‐5p as a new potential biomarker. Ann Clin Transl Neur. 2014;1(1):49–58. doi:10.1002/acn3.24
  • Scherrer N, Fays F, Mueller B, et al. MicroRNA 150-5p Improves Risk Classification for Mortality within 90 Days after Acute Ischemic Stroke. J Stroke. 2017;19(3):323–332. doi:10.5853/jos.2017.00423
  • Perez-Sanchez C, Font-Ugalde P, Ruiz-Limon P, et al. Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients. Hum Mol Genet. 2018;27(5):875–890. doi:10.1093/hmg/ddy008
  • Casabonne D, Benavente Y, Seifert J, et al. Serum levels of hsa-miR-16-5p, hsa-miR-29a-3p, hsa-miR-150-5p, hsa-miR-155-5p and hsa-miR - 223-3p and subsequent risk of chronic lymphocytic leukemia in the EPIC study. Int J Cancer. 2020;147(5):1315–1324. doi:10.1002/ijc.32894
  • Lu W, Zhang H, Niu Y, et al. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol Cancer. 2017;16(1). doi:10.1186/s12943-017-0685-9
  • Yan L, Jiao D, Hu H, et al. Identification of lymph node metastasis-related microRNAs in lung adenocarcinoma and analysis of the underlying mechanisms using a bioinformatics approach. Exp Biol Med. 2017;242(7):709–717. doi:10.1177/1535370216677353
  • Zhang Y, Wang F, Chen G, He R, Yang L. LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis. Cell Biosci. 2019;9:54. doi:10.1186/s13578-019-0302-2
  • Ou M, Zhao H, Ji G, Zhao X, Zhang Q. Long noncoding RNA MALAT1 contributes to pregnancy-induced hypertension development by enhancing oxidative stress and inflammation through the regulation of the miR-150-5p/ET-1 axis. FASEB J. 2020;34(5):6070–6085. doi:10.1096/fj.201902280R
  • Yang Y, Tai W, Lu N, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging. 2020;12(10):9085–9102. doi:10.18632/aging.103176
  • Chang W, Tsai M, Hung J, et al. miR-150-5p-Containing Extracellular Vesicles Are a New Immunoregulator That Favor the Progression of Lung Cancer in Hypoxic Microenvironments by Altering the Phenotype of NK Cells. Cancers. 2021;13(24):6252. doi:10.3390/cancers13246252
  • Keller A, Ludwig N, Fehlmann T, et al. Low miR-150-5p and miR-320b Expression Predicts Reduced Survival of COPD Patients. Cells-Basel. 2019;8(10):1162. doi:10.3390/cells8101162
  • Vimalraj S, Subramanian R, Dhanasekaran A. LncRNA MALAT1 Promotes Tumor Angiogenesis by Regulating MicroRNA-150-5p/VEGFA Signaling in Osteosarcoma: in-Vitro and In-Vivo Analyses. Front Oncol. 2021;11:742789. doi:10.3389/fonc.2021.742789
  • Jiang H, Zhu M, Wang H, Liu H. Suppression of lncRNA MALAT1 reduces pro-inflammatory cytokines production by regulating miR-150-5p/ZBTB4 axis through JAK/STAT signal pathway in systemic juvenile idiopathic arthritis. Cytokine. 2021;138:155397. doi:10.1016/j.cyto.2020.155397
  • Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–2242. doi:10.1016/S0140-6736(22)00470-6
  • Pottelberge GRV, Mestdagh P, Bracke KR, et al. MicroRNA Expression in Induced Sputum of Smokers and Patients with Chronic Obstructive Pulmonary Disease. Am J Resp Crit Care. 2011;183(7):898–906. doi:10.1164/rccm.201002-0304OC