362
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Prognostic Biomarkers Based on Proteomic Technology in COPD: A Recent Review

, , ORCID Icon, &
Pages 1353-1365 | Received 28 Feb 2023, Accepted 25 Jun 2023, Published online: 30 Jun 2023

References

  • López-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology. 2016;21(1):14–23. doi:10.1111/resp.12660
  • Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390(10100):1151–1210. doi:10.1016/S0140-6736(17)32152-9
  • Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology. 2021;26(4):298–321. doi:10.1111/resp.14007
  • Gershon AS, Thiruchelvam D, Chapman KR, et al. Health services burden of undiagnosed and overdiagnosed COPD. Chest. 2018;153(6):1336–1346. doi:10.1016/j.chest.2018.01.038
  • Balasubramanian A, MacIntyre NR, Henderson RJ, et al. Diffusing capacity of carbon monoxide in assessment of COPD. Chest. 2019;156(6):1111–1119. doi:10.1016/j.chest.2019.06.035
  • Boutou AK, Shrikrishna D, Tanner RJ, et al. Lung function indices for predicting mortality in COPD. Eur Respir J. 2013;42(3):616. doi:10.1183/09031936.00146012
  • Csikesz N, Gartman E. New developments in the assessment of COPD: early diagnosis is key. Int J Chronic Obstruct. 2014;9(1):277–286. doi:10.2147/COPD.S46198
  • Lowe KE, Regan EA, Anzueto A, Austin E, Austin JHM, Beaty TH. COPDGene 2019: redefining the diagnosis of chronic obstructive pulmonary disease. Am J Physiol Lung Cell. 2019;5(6):384–399. doi:10.15326/jcopdf.6.5.2019.0149
  • Dong T, Santos S, Yang Z, Yang S, Kirkhus NE. Sputum and salivary protein biomarkers and point-of-care biosensors for the management of COPD. Analyst. 2020;145(5):1583–1604. doi:10.1039/C9AN01704F
  • Occhipinti M, Paoletti M, Bartholmai BJ, et al. Spirometric assessment of emphysema presence and severity as measured by quantitative CT and CT-based radiomics in COPD. Resp Res. 2019;20(1):101. doi:10.1186/s12931-019-1049-3
  • Regan EA, Lynch DA, Curran-Everett D, et al. Clinical and radiologic disease in smokers with normal spirometry. JAMA Intern Med. 2015;175(9):1539–1549. doi:10.1001/jamainternmed.2015.2735
  • Firdaus AAMH, Pim ADJ, Jan-Willem JL, et al. Airway wall thickness associated with forced expiratory volume in 1 second decline and development of airflow limitation. Eur Respir J. 2015;45(3):644. doi:10.1183/09031936.00020714
  • Koo HJ, Lee SM, Seo JB, et al. Prediction of pulmonary function in patients with chronic obstructive pulmonary disease: correlation with quantitative CT parameters. Korean J Radiol. 2019;20(4):683–692. doi:10.3348/kjr.2018.0391
  • McAllister DA, Ahmed FS, Austin JHM, et al. Emphysema predicts hospitalisation and incident airflow obstruction among older smokers: a prospective cohort study. PLoS One. 2014;9(4):e93221. doi:10.1371/journal.pone.0093221
  • Chaudhary MFA, Hoffman EA, Guo J, et al. Predicting severe chronic obstructive pulmonary disease exacerbations using quantitative CT: a retrospective model development and external validation study. Lancet Digit Health. 2023;5(2):e83–e92. doi:10.1016/S2589-7500(22)00232-1
  • Matsuoka S, Washko GR, Dransfield MT, et al. Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad Radiol. 2010;17(1):93–99. doi:10.1016/j.acra.2009.07.022
  • Galbán CJ, Han MK, Boes JL, et al. Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711–1715. doi:10.1038/nm.2971
  • Bodduluri S, Reinhardt JM, Hoffman EA, et al. Signs of gas trapping in normal lung density regions in smokers. Am J Resp Crit Care. 2017;196(11):1404–1410. doi:10.1164/rccm.201705-0855OC
  • Kirby M, Tanabe N, Vasilescu DM, et al. Computed tomography total airway count is associated with the number of micro–computed tomography terminal bronchioles. Am J Resp Crit Care. 2019;201(5):613–615. doi:10.1164/rccm.201910-1948LE
  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. doi:10.1067/mcp.2001.113989
  • Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Stat Med. 2012;31(25):2973–2984. doi:10.1002/sim.5403
  • Shaw JG, Vaughan A, Dent AG, et al. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J Thorac Dis. 2014;6(11):1532–1547. doi:10.3978/j.issn.2072-1439.2014.11.33
  • Kahn P. From genome to proteome: looking at a cell’s proteins. Science. 1995;270(5235):369–370. doi:10.1126/science.270.5235.369
  • Haines DS, Lee JE, Beauparlant SL, et al. Protein interaction profiling of the p97 adaptor UBXD1 points to a role for the complex in modulating ERGIC-53 trafficking. Mol Cell Proteom. 2012;11(6). doi:10.1074/mcp.M111.016444
  • Marko-Varga G, Omenn GS, Paik Y, Hancock WS. A first step toward completion of a genome-wide characterization of the human proteome. J Proteome Res. 2013;12(1):1–5. doi:10.1021/pr301183a
  • Cagnone M, Salvini R, Bardoni A, Fumagalli M, Iadarola P, Viglio S. Searching for biomarkers of chronic obstructive pulmonary disease using proteomics: the current state. Electrophoresis. 2019;40(1):151–164. doi:10.1002/elps.201800305
  • Foster MW, Morrison LD, Todd JL, et al. Quantitative proteomics of bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. J Proteome Res. 2015;14(2):1238–1249. doi:10.1021/pr501149m
  • Landi C, Bargagli E, Carleo A, et al. A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics. 2015;128:375–387. doi:10.1016/j.jprot.2015.08.012
  • Takahashi K, Pavlidis S, Ng Kee Kwong F, et al. Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J. 2018;51(5):1702173. doi:10.1183/13993003.02173-2017
  • Paone G, Leone V, Conti V, et al. Blood and sputum biomarkers in COPD and asthma: a review. Eur Rev Med Pharmacol Sci. 2016;4(20):698–708.
  • Tang Y, Chen Z, Fang Z, Zhao J, Zhou Y, Tang C. Multi-omics study on biomarker and pathway discovery of chronic obstructive pulmonary disease. J Breath Res. 2021;15(4):044001. doi:10.1088/1752-7163/ac15ea
  • Halpin DMG, Criner GJ, Papi A, et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. the 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Resp Crit Care. 2021;203(1):24–36. doi:10.1164/rccm.202009-3533SO
  • Reisdorph NA, Reisdorph R, Bowler R, Broccardo C. Proteomics methods and applications for the practicing clinician. Ann Allergy Asthma Immunol. 2009;102(6):523–529. doi:10.1016/S1081-1206(10)60128-7
  • Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182–196. doi:10.1093/chromsci/bmw167
  • Chen C, Hou J, Tanner JJ, Cheng J. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci. 2020;21(8):2873.
  • Rozanova S, Barkovits K, Nikolov M, Schmidt C, Urlaub H, Marcus K. Quantitative mass spectrometry-based proteomics: an overview. In: Marcus K, Eisenacher M, Sitek B, editors. Quantitative Methods in Proteomics. New York, NY: Springer US; 2021:85–116.
  • Rossi R, De Palma A, Benazzi L, Riccio AM, Canonica GW, Mauri P. Biomarker discovery in asthma and COPD by proteomic approaches. Proteomics. 2014;8(11–12):901–915. doi:10.1002/prca.201300108
  • Wilhelm M, Schlegl J, Hahne H, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509(7502):582–587. doi:10.1038/nature13319
  • Noor Z, Ahn SB, Baker MS, Ranganathan S, Mohamedali A. Mass spectrometry–based protein identification in proteomics—a review. Brief Bioinform. 2021;22(2):1620–1638. doi:10.1093/bib/bbz163
  • Núñez EV, Domont GB, Nogueira FCS. iTRAQ-based shotgun proteomics approach for relative protein quantification. In: Guest PC, editor. Multiplex Biomarker Techniques: Methods and Applications. New York, NY: Springer; 2017:267–274.
  • The UC. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(D1):D204–D212. doi:10.1093/nar/gku989
  • Sayers EW, Beck J, Bolton EE, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2021;49(D1):D10–D17. doi:10.1093/nar/gkaa892
  • Schaab C, Geiger T, Stoehr G, Cox J, Mann M. Analysis of high accuracy, quantitative proteomics data in the MaxQB database. Mol Cell Proteom. 2012;11(3):M111.014068. doi:10.1074/mcp.M111.014068
  • Fujii K, Nakamura H, Nishimura T. Recent mass spectrometry-based proteomics for biomarker discovery in lung cancer, COPD, and asthma. Expert Rev Proteom. 2017;14(4):373–386. doi:10.1080/14789450.2017.1304215
  • Pratte KA, Curtis JL, Kechris K, et al. Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. Resp Res. 2021;22(1):127. doi:10.1186/s12931-021-01686-z
  • Bozinovski S, Hutchinson A, Thompson M, et al. Serum amyloid A is a biomarker of acute exacerbations of chronic obstructive pulmonary disease. Am J Resp Crit Care. 2008;177(3):269–278. doi:10.1164/rccm.200705-678OC
  • Kim S, Ahn H, Park J, et al. A proteomics-based analysis of blood biomarkers for the diagnosis of COPD acute exacerbation. Int J Chronic Obstruct. 2021;16:1497–1508. doi:10.2147/COPD.S308305
  • Leung JM, Chen V, Hollander Z, et al. COPD exacerbation biomarkers validated using multiple reaction monitoring mass spectrometry. PLoS One. 2016;11(8):e0161129. doi:10.1371/journal.pone.0161129
  • Diao W, Shen N, Du Y, et al. Identification of thyroxine-binding globulin as a candidate plasma marker of chronic obstructive pulmonary disease. Int J Chronic Obstruct. 2017;12:1549–1564. doi:10.2147/COPD.S137806
  • Diao W, Shen N, Du Y, et al. Fetuin-B (FETUB): a plasma biomarker candidate related to the severity of lung function in COPD. Sci Rep. 2016;6(1):30045. doi:10.1038/srep30045
  • Beiko T, Janech MG, Alekseyenko AV, et al. Serum proteins associated with emphysema progression in severe alpha-1 antitrypsin deficiency. Am J Physiol Lung Cell. 2017;3(4):204–216. doi:10.15326/jcopdf.4.3.2016.0180
  • Lv MY, Qiang LX, Wang BC, et al. Complex evaluation of surfactant protein A and D as biomarkers for the severity of COPD. Int J Chronic Obstruct. 2022;17:1537–1552. doi:10.2147/COPD.S366988
  • Hristova VA, Watson A, Chaerkady R, et al. Multiomics links global surfactant dysregulation with airflow obstruction and emphysema in COPD. Erj Open Res. 2023;9(3):00378–2022. doi:10.1183/23120541.00378-2022
  • Yang M, Kohler M, Heyder T, et al. Long-term smoking alters abundance of over half of the proteome in bronchoalveolar lavage cell in smokers with normal spirometry, with effects on molecular pathways associated with COPD. Resp Res. 2018;19(1):40. doi:10.1186/s12931-017-0695-6
  • Dasgupta A, Chakraborty R, Saha B, et al. Sputum protein biomarkers in airway diseases: a pilot study. Int J Chronic Obstruct. 2021;16:2203–2215. doi:10.2147/COPD.S306035
  • Gao J, Ohlmeier S, Nieminen P, et al. Elevated sputum BPIFB1 levels in smokers with chronic obstructive pulmonary disease: a longitudinal study. Am J Physiol-Lung C. 2015;309(1):L17–L26. doi:10.1152/ajplung.00082.2015
  • Mallia-Milanes B, Dufour A, Philp C, et al. TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations. Am J Physiol-Lung C. 2018;315(6):L1003–L1014. doi:10.1152/ajplung.00175.2018
  • Ohlmeier S, Nieminen P, Gao J, et al. Lung tissue proteomics identifies elevated transglutaminase 2 levels in stable chronic obstructive pulmonary disease. Am J Physiol-Lung C. 2016;310(11):L1155–L1165. doi:10.1152/ajplung.00021.2016
  • Sun P, Ye R, Wang C, Bai S, Zhao L. Identification of proteomic signatures associated with COPD frequent exacerbators. Life Sci. 2019;230:1–9. doi:10.1016/j.lfs.2019.05.047
  • Liu Y, Liu H, Li C, Ma C, Ge W. Proteome profiling of lung tissues in Chronic Obstructive Pulmonary Disease (COPD): platelet and macrophage dysfunction contribute to the pathogenesis of COPD. Int J Chronic Obstruct. 2020;15:973–980. doi:10.2147/COPD.S246845
  • Skerrett-Byrne DA, Bromfield EG, Murray HC, et al. Time-resolved proteomic profiling of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Respirology. 2021;26(10):960–973. doi:10.1111/resp.14111
  • Ye R, Wang C, Sun P, Bai S, Zhao L. AGR3 regulates airway epithelial junctions in patients with frequent exacerbations of COPD. Front Pharmacol. 2021;12. doi:10.3389/fphar.2021.669403
  • Franciosi L, Postma DS, van den Berge M, et al. Susceptibility to COPD: differential proteomic profiling after acute smoking. PLoS One. 2014;9(7):e102037. doi:10.1371/journal.pone.0102037
  • Qin W, Huang H, Dai Y, Han W, Gao Y. Proteome analysis of urinary biomarkers in a cigarette smoke-induced COPD rat model. Resp Res. 2022;23(1):156. doi:10.1186/s12931-022-02070-1
  • Coxson HO, Dirksen A, Edwards LD, et al. The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respir Med. 2013;1(2):129–136. doi:10.1016/S2213-2600(13)70006-7
  • Regan EA, Hersh CP, Castaldi PJ, et al. Omics and the search for blood biomarkers in chronic obstructive pulmonary disease. Insights from COPDGene. Am J Resp Cell Mol. 2019;61(2):143–149. doi:10.1165/rcmb.2018-0245PS
  • Takei N, Suzuki M, Makita H, et al. Serum alpha-1 antitrypsin levels and the clinical course of chronic obstructive pulmonary disease. Int J Chronic Obstruct. 2019;14:2885–2893. doi:10.2147/COPD.S225365
  • Kranenburg AR, Willems-Widyastuti A, Mooi WJ, et al. Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease. Am J Clin Pathol. 2006;126(5):725–735. doi:10.1309/JC477FAEL1YKV54W
  • Man SFP, Xing L, Connett JE, et al. Circulating fibronectin to C-reactive protein ratio and mortality: a biomarker in COPD? Eur Respir J. 2008;32(6):1451. doi:10.1183/09031936.00153207
  • Zuo L, Pannell BK, Zhou T, Chuang C. Historical role of alpha-1-antitrypsin deficiency in respiratory and hepatic complications. Gene. 2016;589(2):118–122. doi:10.1016/j.gene.2016.01.004
  • Joanna C. Targeted screening programmes in COPD: how to identify individuals with α1-antitrypsin deficiency. Eur Respir Rev. 2015;24(135):40. doi:10.1183/09059180.00010614
  • Joan BS, Sarah JL, Rupert J, et al. Trends of testing for and diagnosis of α1-antitrypsin deficiency in the UK: more testing is needed. Eur Respir J. 2018;52(1):1800360. doi:10.1183/13993003.00360-2018
  • Meyer KC, Raghu G, Baughman RP, et al. An official American thoracic society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Resp Crit Care. 2012;185(9):1004–1014. doi:10.1164/rccm.201202-0320ST
  • Hogea S, Tudorache E, Pescaru C, Marc M, Oancea C. Bronchoalveolar lavage: role in the evaluation of pulmonary interstitial disease. Expert Rev Resp Med. 2020;14(11):1117–1130. doi:10.1080/17476348.2020.1806063
  • Pelaia G, Terracciano R, Vatrella A, et al. Application of proteomics and peptidomics to COPD. Biomed Res Int. 2014;2014:764581. doi:10.1155/2014/764581
  • Casado B, Iadarola P, Pannell LK, et al. Protein expression in sputum of smokers and chronic obstructive pulmonary disease patients: a pilot study by CapLC-ESI-Q-TOF. J Proteome Res. 2007;6(12):4615–4623. doi:10.1021/pr070440q
  • Amato MD, Iadarola P, Viglio S. Proteomic analysis of human sputum for the diagnosis of lung disorders: where are we today? Int J Mol Sci. 2022;23(10):5692.
  • Ohlmeier S, Mazur W, Linja-aho A, et al. Sputum proteomics identifies elevated PIGR levels in smokers and mild-to-moderate COPD. J Proteome Res. 2012;11(2):599–608. doi:10.1021/pr2006395
  • Britto CJ, Cohn L. Bactericidal/permeability-increasing protein fold–containing family member A1 in airway host protection and respiratory disease. Am J Resp Cell Mol. 2014;52(5):525–534. doi:10.1165/rcmb.2014-0297RT
  • Franciosi L, Govorukhina N, Fusetti F, et al. Proteomic analysis of human epithelial lining fluid by microfluidics-based nanoLC-MS/MS: a feasibility study. Electrophoresis. 2013;34(18):2683–2694. doi:10.1002/elps.201300020
  • Bowler RP, Ellison MC, Reisdorph N. Proteomics in pulmonary medicine. Chest. 2006;130(2):567–574. doi:10.1378/chest.130.2.567
  • Franciosi L, Govorukhina N, Ten Hacken N, Postma D, Bischoff R. Proteomics of epithelial lining fluid obtained by bronchoscopic microprobe sampling. In: Toms SA, Weil RJ, editors. Nanoproteomics: Methods and Protocols. Totowa, NJ: Humana Press; 2011:17–28.
  • Casado B, Luisetti M, Iadarola P. Advances in proteomic techniques for biomarker discovery in COPD. Expert Rev Clin Immunol. 2011;7(1):111–123. doi:10.1586/eci.10.75
  • Sun C, Zhou T, Xie G, et al. Proteomics of exhaled breath condensate in stable COPD and non-COPD controls using tandem mass tags (TMTs) quantitative mass spectrometry: a pilot study. J Proteomics. 2019;206:103392. doi:10.1016/j.jprot.2019.103392
  • López-Sánchez LM, Jurado-Gámez B, Feu-Collado N, et al. Exhaled breath condensate biomarkers for the early diagnosis of lung cancer using proteomics. Am J Physiol-Lung C. 2017;313(4):L664–L676. doi:10.1152/ajplung.00119.2017
  • Fumagalli M, Ferrari F, Luisetti M, et al. Profiling the proteome of exhaled breath condensate in healthy smokers and COPD patients by LC-MS/MS. Int J Mol Sci. 2012:13894–13910. doi:10.3390/ijms131113894
  • Zhou M, Kong Y, Wang X, et al. LC-MS/MS-based quantitative proteomics analysis of different stages of non-small-cell lung cancer. Biomed Res Int. 2021;2021:5561569. doi:10.1155/2021/5561569
  • Wu J, Li X, Zhao M, Huang H, Sun W, Gao Y. Early detection of urinary proteome biomarkers for effective early treatment of pulmonary fibrosis in a rat model. Proteomics. 2017;11(11–12):1700103. doi:10.1002/prca.201700103
  • Qin W, Zhang X, Chen L, et al. Differential urine proteome analysis of a ventilator-induced lung injury rat model by label-free quantitative and parallel reaction monitoring proteomics. Sci Rep. 2021;11(1):21446. doi:10.1038/s41598-021-01007-w
  • Batra R, Uni R, Akchurin OM, et al. Urine-based multi-omic comparative analysis of COVID-19 and bacterial sepsis-induced ARDS. Mol Med. 2023;29(1):13. doi:10.1186/s10020-023-00609-6
  • Wu Q, Fenton RA. Urinary proteomics for kidney dysfunction: insights and trends. Expert Rev Proteom. 2021;18(6):437–452. doi:10.1080/14789450.2021.1950535
  • Wang X, Cheng Z. Cross-sectional studies: strengths, weaknesses, and recommendations. Chest. 2020;158(1):S65–S71. doi:10.1016/j.chest.2020.03.012
  • Liang W, Yang Y, Gong S, et al. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease. Cell Host Microbe. 2023;31(6):1054–1070.e9. doi:10.1016/j.chom.2023.04.018
  • Zhuang Y, Xing F, Ghosh D, et al. Deep learning on graphs for multi-omics classification of COPD. PLoS One. 2023;18(4):e0284563. doi:10.1371/journal.pone.0284563