196
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Serum Proteomic Profiling in Patients with Chronic Obstructive Pulmonary Disease

, ORCID Icon, , , , & ORCID Icon show all
Pages 1623-1635 | Received 07 Apr 2023, Accepted 03 Jul 2023, Published online: 28 Jul 2023

References

  • Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–2242. doi:10.1016/S0140-6736(22)00470-6
  • Staples KJ. Breaching the defenses? Mucosal-associated invariant T cells, smoking, and chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2023;68(1):9–10. doi:10.1165/rcmb.2022-0393ED
  • Stolz D, Mkorombindo T, Schumann DM, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet. 2022;400(10356):921–972. doi:10.1016/S0140-6736(22)01273-9
  • Li HY, Gao TY, Fang W, et al. Global, regional and national burden of chronic obstructive pulmonary disease over a 30-year period: estimates from the 1990 to 2019 Global Burden of Disease Study. Respirology. 2023;28(1):29–36. doi:10.1111/resp.14349
  • Koba T, Takeda Y, Narumi R, et al. Proteomics of serum extracellular vesicles identifies a novel COPD biomarker, fibulin-3 from elastic fibres. ERJ Open Res. 2021;7(1):00658–2020. doi:10.1183/23120541.00658-2020
  • Wahn V, von Bernuth H. IgG subclass deficiencies in children: facts and fiction. Pediatr Allergy Immunol. 2017;28(6):521–524. doi:10.1111/pai.12757
  • Ba Ta T, Tran Viet T, Xuan Nguyen K, et al. Changes in serum immunoglobulin G subclasses during the treatment of patients with chronic obstructive pulmonary disease with infectious exacerbations. Adv Respir Med. 2022;90(6):500–510. doi:10.3390/arm90060056
  • Jeraiby MA. Molecular basis of immunoglobulin heavy constant G4 gene (IGHG4)-related low serum IgG4 subclasses in Down syndrome. Saudi Med J. 2021;42(9):975–980.
  • Wen H, Guo D, Zhao Z, et al. Novel pyroptosis-associated genes signature for predicting the prognosis of sarcoma and validation. Biosci Rep. 2022;42(12):57.
  • Feng Y, Li M, Yangzhong X, et al. Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem. 2022;78(4):721–737. doi:10.1007/s13105-022-00909-1
  • Zhu Z, Lian X, Su X, Wu W, Zeng Y, Chen X. Exosomes derived from adipose-derived stem cells alleviate cigarette smoke-induced lung inflammation and injury by inhibiting alveolar macrophages pyroptosis. Respir Res. 2022;23(1):5. doi:10.1186/s12931-022-01926-w
  • Wang X, Tanino Y, Sato S, et al. Secretoglobin 3A2 attenuates lipopolysaccharide-induced inflammation through inhibition of ERK and JNK pathways in bronchial epithelial cells. Inflammation. 2015;38(2):828–834. doi:10.1007/s10753-014-9992-0
  • Su Y, Han W, Kovacs-Kasa A, Verin AD, Kovacs L. HDAC6 activates ERK in airway and pulmonary vascular remodeling of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2021;65(6):603–614. doi:10.1165/rcmb.2020-0520OC
  • Xu X, Li J, Zhang Y, Zhang L. Arachidonic acid 15-lipoxygenase: effects of its expression, metabolites, and genetic and epigenetic variations on airway inflammation. Allergy Asthma Immunol Res. 2021;13(5):684–696. doi:10.4168/aair.2021.13.5.684
  • Shin NR, Kim SH, Ko JW, et al. HemoHIM, a herbal preparation, alleviates airway inflammation caused by cigarette smoke and lipopolysaccharide. Lab Anim Res. 2017;33(1):40–47. doi:10.5625/lar.2017.33.1.40
  • Wells JM, O’Reilly PJ, Szul T, et al. An aberrant leukotriene A4 hydrolase-proline-glycine-proline pathway in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;190(1):51–61. doi:10.1164/rccm.201401-0145OC
  • Paige M, Wang K, Burdick M, et al. Role of leukotriene A4 hydrolase aminopeptidase in the pathogenesis of emphysema. J Immunol. 2014;192(11):5059–5068. doi:10.4049/jimmunol.1400452
  • Röhn TA, Numao S, Otto H, Loesche C, Thoma G. Drug discovery strategies for novel leukotriene A4 hydrolase inhibitors. Expert Opin Drug Discov. 2021;16(12):1483–1495. doi:10.1080/17460441.2021.1948998
  • Wei L, Xu D, Qian Y, et al. Comprehensive analysis of gene-expression profile in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:1103–1109. doi:10.2147/COPD.S68570
  • Chen X, Lu X, Chen J, et al. Association of nsv823469 copy number loss with decreased risk of chronic obstructive pulmonary disease and pulmonary function in Chinese. Sci Rep. 2017;7:40060. doi:10.1038/srep40060
  • Płusa T. Azithromycin in the treatment of patients with exacerbation of chronic obstructive pulmonary disease. Pol Merkur Lekarski. 2020;48(283):65–68.
  • Li T, Gao L, Ma HX, et al. Clinical value of IL-13 and ECP in the serum and sputum of eosinophilic AECOPD patients. Exp Biol Med (Maywood). 2020;245(14):1290–1298. doi:10.1177/1535370220931765
  • Fens N, de Nijs SB, Peters S, et al. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Respir J. 2011;38(6):1301–1309. doi:10.1183/09031936.00032911
  • Grootendorst DC, Gauw SA, Verhoosel RM, et al. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax. 2007;62(12):1081–1087. doi:10.1136/thx.2006.075937
  • Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem. 2023;133:106427. doi:10.1016/j.bioorg.2023.106427
  • Bi J, Liang W, Wang Y, Tian W, Cao S, Liu P. Long noncoding RNA PSMA3 antisense RNA 1 promotes cell proliferation, migration, and invasion in pancreatic ductal adenocarcinoma via targeting microRNA-154-5p to positively modulate karyopherin subunit alpha 4. Pancreas. 2022;51(8):1037–1046. doi:10.1097/MPA.0000000000002136
  • Mittenberg AG, Moiseeva TN, Kuzyk VO, Barlev NA. Regulation of endoribonuclease activity of alpha-type proteasome subunits in proerythroleukemia K562 upon hemin-induced differentiation. Protein J. 2016;35(1):17–23. doi:10.1007/s10930-015-9642-x
  • Shi Y, Zhao T, Yang X, et al. PM(2.5)-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. Sci Total Environ. 2019;650(Pt 1):908–921. doi:10.1016/j.scitotenv.2018.09.085
  • Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. doi:10.1101/cshperspect.a021873
  • Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022;21(1):104. doi:10.1186/s12943-022-01569-x
  • He S, Xie L, Lu J, Sun S. Characteristics and potential role of M2 macrophages in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:3029–3039. doi:10.2147/COPD.S147144
  • Ong J, Faiz A, Timens W, et al. Marked TGF-β-regulated miRNA expression changes in both COPD and control lung fibroblasts. Sci Rep. 2019;9(1):18214. doi:10.1038/s41598-019-54728-4
  • Liu G, Philp AM, Corte T, et al. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther. 2021;225:107839. doi:10.1016/j.pharmthera.2021.107839