172
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Lung Fibroblasts from Chronic Obstructive Pulmonary Disease Subjects Have a Deficient Gene Expression Response to Cigarette Smoke Extract Compared to Healthy

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 2999-3014 | Received 23 Aug 2023, Accepted 16 Nov 2023, Published online: 17 Dec 2023

References

  • Choi JY, Rhee CK. Diagnosis and treatment of early Chronic Obstructive Lung Disease (COPD). J Clin Med. 2020;9(11):3426. doi:10.3390/jcm9113426
  • Osei ET, Hackett T-L. Epithelial-mesenchymal crosstalk in COPD: an update from in vitro model studies. Int J Biochem Cell Biol. 2020;125:105775. doi:doi:10.1016/j.biocel.2020.105775
  • Hogg JC, Paré PD, Hackett T-L. The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol Rev. 2017;97(2):529–552. doi:10.1152/physrev.00025.2015
  • Rodgman A, Perfetti TA. The Chemical Components of Tobacco and Tobacco Smoke. 2nd ed. CRC press; 2013.
  • Martey CA, Pollock SJ, Turner CK, et al. Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol. 2004;287(5):L981–91. doi:10.1152/ajplung.00239.2003
  • Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2008;294(3):L478–88. doi:10.1152/ajplung.00361.2007
  • Weidner J, Jarenbäck L, Åberg I, et al. Endoplasmic reticulum, Golgi, and lysosomes are disorganized in lung fibroblasts from chronic obstructive pulmonary disease patients. Physiol Rep. 2018;6(5):e13584. doi:10.14814/phy2.13584
  • Miglino N, Roth M, Lardinois D, Sadowski C, Tamm M, Borger P. Cigarette smoke inhibits lung fibroblast proliferation by translational mechanisms. Eur Respir J. 2012;39(3):705–711. doi:10.1183/09031936.00174310
  • Milara J, Serrano A, Peiró T, et al. Aclidinium inhibits cigarette smoke-induced lung fibroblast-to-myofibroblast transition. Euro Respirat J. 2013;41(6):1264–1274. doi:10.1183/09031936.00017712
  • Nyunoya T, Monick MM, Klingelhutz A, Yarovinsky TO, Cagley JR, Hunninghake GW. Cigarette smoke induces cellular senescence. Am J Respir Cell Mol Biol. 2006;35(6):681–688. doi:10.1165/rcmb.2006-0169OC
  • Son ES, Kyung SY, Lee SP, et al. Role of protein kinase C-η in cigarette smoke extract-induced apoptosis in MRC-5-cells. Hum Exp Toxicol. 2015;34(9):869–877. doi:10.1177/0960327114561343
  • Ishii T, Matsuse T, Igarashi H, Masuda M, Teramoto S, Ouchi Y. Tobacco smoke reduces viability in human lung fibroblasts: protective effect of glutathione S-transferase P1. Am J Physiol Lung Cell Mol Physiol. 2001;280(6):L1189–95. doi:10.1152/ajplung.2001.280.6.L1189
  • Rogers LRK, Verlinde M, Mias GI, Gaggar A. Gene expression microarray public dataset reanalysis in chronic obstructive pulmonary disease. PLoS One. 2019;14(11):e0224750. doi:10.1371/journal.pone.0224750
  • Ning W, Li CJ, Kaminski N, et al. Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A. 2004;101(41):14895–14900. doi:10.1073/pnas.0401168101
  • Yun JH, Morrow J, Owen CA, et al. Transcriptomic analysis of lung tissue from cigarette smoke-induced emphysema murine models and human chronic obstructive pulmonary disease show shared and distinct pathways. Am J Respir Cell Mol Biol. 2017;57(1):47–58. doi:10.1165/rcmb.2016-0328OC
  • Yoo S, Takikawa S, Geraghty P, et al. Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD. PLoS Genet. 2015;11(1):e1004898. doi:10.1371/journal.pgen.1004898
  • Vucic EA, Chari R, Thu KL, et al. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am J Respir Cell Mol Biol. 2014;50(5):912–922. doi:10.1165/rcmb.2013-0304OC
  • Bekker NJ, Pijkeren A, Wolters JC, et al. A proteomics approach to identify COPD-related changes in lung fibroblasts. Am J Physiol Lung Cell Mole Physiol. 2023;324(4):L521–L535. doi:10.1152/ajplung.00105.2022
  • Vaughan A, Stevanovic S, Jafari M, et al. The effect of diesel emission exposure on primary human bronchial epithelial cells from a COPD cohort: n-acetylcysteine as a potential protective intervention. Environ Res. 2019;170:194–202. doi:10.1016/j.envres.2018.12.035
  • Malmström J, Larsen K, Hansson L, et al. Proteoglycan and proteome profiling of central human pulmonary fibrotic tissue utilizing miniaturized sample preparation: a feasibility study. Proteomics. 2002;2(4):394–404. doi:10.1002/1615-9861(200204)2:4<394::AID-PROT394>3.0.CO;2-6
  • Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformat. 2013;14(1):128. doi:10.1186/1471-2105-14-128
  • Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–W97. doi:10.1093/nar/gkw377
  • Xie Z, Bailey A, Kuleshov MV, et al. Gene set knowledge discovery with enrichr. Current Protocol. 2021;1(3):e90. doi:10.1002/cpz1.90
  • Zong D, Li J, Cai S, et al. Notch1 regulates endothelial apoptosis via the ERK pathway in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol. 2018;315(3):C330–C340. doi:10.1152/ajpcell.00182.2017
  • Zong D, Ouyang R, Li J, Chen Y, Chen P. Notch signaling in lung diseases: focus on Notch1 and Notch3. Ther Adv Respir Dis. 2016;10(5):468–484. doi:10.1177/1753465816654873
  • Bodas M, Subramaniyan B, Karmouty-Quintana H, Vitiello PF, Walters MS. The emerging role of NOTCH3 receptor signalling in human lung diseases. Expert Rev Mol Med. 2022;24:e33. doi:10.1017/erm.2022.27
  • Zong DD, Liu XM, Li JH, et al. Resveratrol attenuates cigarette smoke induced endothelial apoptosis by activating Notch1 signaling mediated autophagy. Respir Res. 2021;22(1):22. doi:10.1186/s12931-021-01620-3
  • Benedito R, Roca C, Sörensen I, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137(6):1124–1135. doi:10.1016/j.cell.2009.03.025
  • Kumar V, Vashishta M, Kong L, et al. The role of notch, hedgehog, and wnt signaling pathways in the resistance of tumors to anticancer therapies Review. Front Cell Develop Biol. 2021;2021:9. doi:10.3389/fcell.2021.650772
  • Ringuette R, Atkins M, Lagali PS, et al. A Notch-Gli2 axis sustains Hedgehog responsiveness of neural progenitors and Müller glia. Dev. Biol. 2016;411(1):85–100. doi:doi:10.1016/j.ydbio.2016.01.006
  • Wasson CW, Ross RL, Wells R, et al. Long non-coding RNA HOTAIR induces GLI2 expression through Notch signalling in systemic sclerosis dermal fibroblasts. Arth Res Ther. 2020;22(1):286. doi:10.1186/s13075-020-02376-9
  • Ancel J, Belgacemi R, Perotin J-M, et al. Sonic hedgehog signalling as a potential endobronchial biomarker in COPD. Respir Res. 2020;21(1):207. doi:10.1186/s12931-020-01478-x
  • Belgacemi R, Luczka E, Ancel J, et al. Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine. 2020;51:102572. doi:doi:10.1016/j.ebiom.2019.11.033
  • Cheng Y, Lin CH, Chen JY, Li CH, Liu YT, Chen BC. Induction of connective tissue growth factor expression by hypoxia in human lung fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 pathways. PLoS One. 2016;11(8):e0160593. doi:10.1371/journal.pone.0160593
  • Kang X, Guo T, Liu L, Ding SZ, Lei C, Luo H. Association between PTCH1 gene polymorphisms and chronic obstructive pulmonary disease susceptibility in a Chinese Han population: a case-control study. Chin Med J. 2020;133(17):2071–2077. doi:10.1097/cm9.0000000000000858
  • Tam A, Hughes M, McNagny KM, et al. Hedgehog signaling in the airway epithelium of patients with chronic obstructive pulmonary disease. Sci Rep. 2019;9(1):3353. doi:10.1038/s41598-019-40045-3
  • Lahmar Z, Ahmed E, Fort A, Vachier I, Bourdin A, Bergougnoux A. Hedgehog pathway and its inhibitors in chronic obstructive pulmonary disease (COPD). Pharmacol Ther. 2022;240:108295. doi:10.1016/j.pharmthera.2022.108295
  • Zhu L, Xu F, Kang X, et al. The antioxidant N-acetylcysteine promotes immune response and inhibits epithelial-mesenchymal transition to alleviate pulmonary fibrosis in chronic obstructive pulmonary disease by suppressing the VWF/p38 MAPK axis. Mol Med. 2021;27(1):97. doi:10.1186/s10020-021-00342-y
  • Sugiura H, Liu X, Togo S, et al. Prostaglandin E(2) protects human lung fibroblasts from cigarette smoke extract-induced apoptosis via EP(2) receptor activation. J Cell Physiol. 2007;210(1):99–110. doi:10.1002/jcp.20825
  • Wang M, Chen X, Jin W, Xu X, Li X, Sun L. Ginsenoside Rb3 exerts protective properties against cigarette smoke extract-induced cell injury by inhibiting the p38 MAPK/NF-κB and TGF-β1/VEGF pathways in fibroblasts and epithelial cells. Biomed Pharmacother. 2018;108:1751–1758. doi:doi:10.1016/j.biopha.2018.10.018
  • Sun C, Zhu M, Yang Z, et al. LL-37 secreted by epithelium promotes fibroblast collagen production: a potential mechanism of small airway remodeling in chronic obstructive pulmonary disease. Lab Invest. 2014;94(9):991–1002. doi:doi:10.1038/labinvest.2014.86
  • Kim S-Y, Lee J-H, Huh JW, et al. Cigarette smoke induces akt protein degradation by the ubiquitin-proteasome system*. J Biol Chem. 2011;286(37):31932–31943. doi:doi:10.1074/jbc.M111.267633
  • Volpi G, Facchinetti F, Moretto N, Civelli M, Patacchini R. Cigarette smoke and α,β-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts. Br. J. Pharmacol. 2011;163(3):649–661. doi:10.1111/j.1476-5381.2011.01253.x
  • Park J-W, Yoon JY, Kim YJ, et al. Extracellular signal-regulated kinase (ERK) inhibition attenuates cigarette smoke extract (CSE) induced-death inducing signaling complex (DISC) formation in human lung fibroblasts (MRC-5) cells. J Toxicol Sci. 2010;35(1):33–39. doi:10.2131/jts.35.33
  • Kanaji N, Basma H, Nelson A, et al. Fibroblasts that resist cigarette smoke-induced senescence acquire profibrotic phenotypes. Am J Physiol Lung Cell Mole Physiol. 2014;307(5):L364–L373. doi:10.1152/ajplung.00041.2014
  • Wang C, Zhou J, Wang J, et al. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 2020;5(1):248. doi:10.1038/s41392-020-00345-x
  • Bin YF, Ma N, Lu YX, et al. Erythromycin reverses cigarette smoke extract-induced corticosteroid insensitivity by inhibition of the JNK/c-Jun pathway. Free Radic Biol Med. 2020;152:494–503. doi:10.1016/j.freeradbiomed.2019.11.020
  • Chaturvedi V, Qin J-Z, Denning MF, Choubey D, Diaz MO, Nickoloff BJ. Apoptosis in proliferating, senescent, and immortalized keratinocytes*. J Biol Chem. 1999;274(33):23358–23367. doi:doi:10.1074/jbc.274.33.23358
  • Bennett MR, Macdonald K, Chan S-W, Boyle JJ, Weissberg PL. Cooperative Interactions Between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circul Res. 1998;82(6):704–712. doi:10.1161/01.RES.82.6.704
  • Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci. 2021;22(23):13173. doi:10.3390/ijms222313173
  • Barnes PJ. Small airway fibrosis in COPD. Int J Biochem Cell Biol. 2019;116:105598. doi:doi:10.1016/j.biocel.2019.105598
  • Aleksandra P, Aleksandra P, Konrad P, et al. The expression of histone acetyltransferase KAT6A in non-small cell lung cancer. Anticancer Res. 2022;42(12):5731. doi:10.21873/anticanres.16080
  • Osei ET, Noordhoek JA, Hackett TL, et al. Interleukin-1α drives the dysfunctional cross-talk of the airway epithelium and lung fibroblasts in COPD. Euro Respirat J. 2016;48(2):359–369. doi:10.1183/13993003.01911-2015
  • Moretto N, Facchinetti F, Southworth T, Civelli M, Singh D, Patacchini R. alpha, beta-Unsaturated aldehydes contained in cigarette smoke elicit IL-8 release in pulmonary cells through mitogen-activated protein kinases. Am J Physiol Lung Cell Mol Physiol. 2009;296(5):L839–L848. doi:10.1152/ajplung.90570.2008
  • Krimmer DI, Burgess JK, Wooi TK, Black JL, Oliver BGG. Matrix proteins from smoke-exposed fibroblasts are pro-proliferative. Am J Respir Cell Mol Biol. 2012;46(1):34–39. doi:10.1165/rcmb.2010-0426OC
  • Murata K, Fujita N, Takahashi R. Ninjinyoeito ameliorated cigarette smoke extract-induced apoptosis and inflammation through JNK signaling inhibition in human lung fibroblasts. BMC Compl Med Ther. 2022;22(1):96. doi:10.1186/s12906-022-03574-5
  • Zhan Y, Chen J, Wu J, et al. Human epididymis protein 4 aggravates airway inflammation and remodeling in chronic obstructive pulmonary disease. Respir Res. 2022;23(1):120. doi:10.1186/s12931-022-02040-7
  • Li CJ, Ning W, Matthay MA, Feghali-Bostwick CA, Choi AM. MAPK pathway mediates EGR-1-HSP70-dependent cigarette smoke-induced chemokine production. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L1297–L1303. doi:10.1152/ajplung.00194.2006
  • Hasumi H, Baba M, Hasumi Y, Furuya M, Yao M. Birt-Hogg-Dubé syndrome: clinical and molecular aspects of recently identified kidney cancer syndrome. Int J Urol. 2016;23(3):204–210. doi:10.1111/iju.13015
  • Ramirez Reyes JMJ, Cuesta R, Pause A. Folliculin: a regulator of transcription through AMPK and mTOR signaling pathways. Front Cell Dev Biol. 2021;9:667311. doi:10.3389/fcell.2021.667311
  • Gao Y, Liu Y, Zheng D, et al. HDAC5-mediated Smad7 silencing through MEF2A is critical for fibroblast activation and hypertrophic scar formation. Int J Biol Sci. 2022;18(15):5724–5739. doi:10.7150/ijbs.76140
  • Yeo Y, Yi ES, Kim JM, et al. FGF12 (Fibroblast Growth Factor 12) inhibits vascular smooth muscle cell remodeling in pulmonary arterial hypertension. Hypertension. 2020;76(6):1778–1786. doi:10.1161/hypertensionaha.120.15068
  • Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget. 2016;7(27):42683–42697. doi:10.18632/oncotarget.7977
  • Park T, Koptyra M, Curran T. Fibroblast growth requires CT10 regulator of kinase (Crk) and Crk-like (CrkL). J Biol Chem. 2016;291(51):26273–26290. doi:10.1074/jbc.M116.764613