100
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Expression Profiles of circRNAs and Identification of hsa_circ_0007608 and hsa_circ_0064656 as Potential Biomarkers for COPD-PH Patients

ORCID Icon, , , , , , , & show all
Pages 2457-2471 | Received 26 Jul 2023, Accepted 30 Oct 2023, Published online: 06 Nov 2023

References

  • Ding X, Lin Q, Zhao J, et al. Synonymous mutations in TLR2 and TLR9 genes decrease COPD susceptibility in the Chinese Han population. Pulmonology. 2022;S2531-0437(22):220. doi:10.1016/j.pulmoe.2022.09.010
  • Ma C, Liao K, Wang J, et al. L-Arginine, as an essential amino acid, is a potential substitute for treating COPD via regulation of ROS/NLRP3/NF-κB signaling pathway. Cell Biosci. 2023;13:152. doi:10.1186/s13578-023-00994-9
  • Blanco I, Tura-Ceide O, Peinado VI, et al. Updated Perspectives on Pulmonary Hypertension in COPD. Int J Chron Obstruct Pulmon Dis. 2020;15:1315–1324. doi:10.2147/COPD.S211841
  • Vizza CD, Hoeper MM, Huscher D, et al. Pulmonary Hypertension in Patients With COPD: results From the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Chest. 2021;160(2):678–689.
  • Boucly A, Savale L, Jaïs X, et al. Association between Initial Treatment Strategy and Long-Term Survival in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2021;204(7):842–854. doi:10.1164/rccm.202009-3698OC
  • Yu X, Qin W, Lin X, et al. Synergizing the enhanced RIME with fuzzy K-nearest neighbor for diagnose of pulmonary hypertension. Comput Biol Med. 2023;165:107408. doi:10.1016/j.compbiomed.2023.107408
  • Zheng R, Xu T, Wang X, et al. Stem cell therapy in pulmonary hypertension: current practice and future opportunities. Eur Respir Rev. 2023;32(169):230112. doi:10.1183/16000617.0112-2023
  • Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–691.
  • Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388. doi:10.1038/nature11993
  • Luo H, Xiao T, Sun X, et al. The regulation of circRNA_kif26b on alveolar epithelial cell senescence via miR-346-3p is involved in microplastics-induced lung injuries. Sci Total Environ. 2023;882:163512. doi:10.1016/j.scitotenv.2023.163512
  • Chen Z, Zhu J, Zhou H, et al. The involvement of copper, circular RNAs, and inflammatory cytokines in chronic respiratory disease. Chemosphere. 2022;303(Pt 2):135005. doi:10.1016/j.chemosphere.2022.135005
  • Xia H, Wu Y, Zhao J, et al. N6-Methyladenosine-modified circSAV1 triggers ferroptosis in COPD through recruiting YTHDF1 to facilitate the translation of IREB2. Cell Death Differ. 2023;30(5):1293–1304. doi:10.1038/s41418-023-01138-9
  • Hong L, Ma X, Liu J, et al. Circular RNA-HIPK3 regulates human pulmonary artery endothelial cells function and vessel growth by regulating microRNA-328-3p/STAT3 axis. Pulm Circ. 2021;11(2):20458940211000234. doi:10.1177/20458940211000234
  • Jin X, Xu Y, Guo M, et al. hsa_circNFXL1_009 modulates apoptosis, proliferation, migration, and potassium channel activation in pulmonary hypertension. Mol Ther Nucleic Acids. 2020;23:1007–1019. doi:10.1016/j.omtn.2020.09.029
  • Yin L, Tang Y, Yuan Y. An Overview of the Advances in Research on the Molecular Function and Specific Role of Circular RNA in Cardiovascular Diseases. Biomed Res Int. 2022;2022:5154122. doi:10.1155/2022/5154122
  • Pan S, Chen Y, Yan Y, et al. The emerging roles and mechanisms of exosomal non-coding RNAs in the mutual regulation between adipose tissue and other related tissues in obesity and metabolic diseases. Front Endocrinol (Lausanne). 2022;13:975334. doi:10.3389/fendo.2022.975334
  • Zhang L, Wang C, Lu X, et al. Transcriptome sequencing of hepatocellular carcinoma uncovers multiple types of dysregulated ncRNAs. Front Oncol. 2022;12:927524. doi:10.3389/fonc.2022.927524
  • Zheng H, Hua J, Li H, et al. Comprehensive analysis of the expression of N6-methyladenosine RNA methylation regulators in pulmonary artery hypertension. Front Genet. 2022;13:974740. doi:10.3389/fgene.2022.974740
  • Han X, Li C, Yang P, et al. Potential mechanisms of Qili Qiangxin capsule to prevent pulmonary arterial hypertension based on network pharmacology analysis in a rat model. Ann Transl Med. 2022;10(8):453. doi:10.21037/atm-22-901
  • Wang J, Uddin MN, Wang R, et al. Comprehensive analysis and validation of novel immune and vascular remodeling related genes signature associated with drug interactions in pulmonary arterial hypertension. Front Genet. 2022;13:922213. doi:10.3389/fgene.2022.922213
  • Wei RQ, Zhang WM, Liang Z, et al. Identification of Signal Pathways and Hub Genes of Pulmonary Arterial Hypertension by Bioinformatic Analysis. Can Respir J. 2022;2022:1394088. doi:10.1155/2022/1394088
  • Wang RR, Yuan TY, Chen D, et al. Dan-Shen-Yin Granules Prevent Hypoxia-Induced Pulmonary Hypertension via STAT3/HIF-1α/VEGF and FAK/AKT Signaling Pathways. Front Pharmacol. 2022;13:844400. doi:10.3389/fphar.2022.844400
  • Tang S, Liu Y, Liu B. Integrated bioinformatics analysis reveals marker genes and immune infiltration for pulmonary arterial hypertension. Sci Rep. 2022;12(1):10154. doi:10.1038/s41598-022-14307-6
  • Tu J, Jin J, Chen X, et al. Altered Cellular Immunity and Differentially Expressed Immune-Related Genes in Patients With Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Front Immunol. 2022;13:868983. doi:10.3389/fimmu.2022.868983
  • Lin W, Tang Y, Zhang M, et al. Integrated Bioinformatic Analysis Reveals TXNRD1 as a Novel Biomarker and Potential Therapeutic Target in Idiopathic Pulmonary Arterial Hypertension. Front Med. 2022;9:894584. doi:10.3389/fmed.2022.894584
  • Wang S, Liu Y, Wang Q, et al. Utilizing Network Pharmacology and Molecular Docking Integrated Surface Plasmon Resonance Technology to Investigate the Potential Targets and Mechanisms of Tripterygium wilfordii against Pulmonary Artery Hypertension. Evid Based Complement Alternat Med. 2022;2022:9862733. doi:10.1155/2022/9862733
  • Wei R, Chen L, Li P, et al. IL-13 alleviates idiopathic pulmonary hypertension by inhibiting the proliferation of pulmonary artery smooth muscle cells and regulating macrophage infiltration. Am J Transl Res. 2022;14(7):4573–4590.
  • Xu SL, Deng YS, Liu J, et al. Regulation of circular RNAs act as ceRNA in a hypoxic pulmonary hypertension rat model. Genomics. 2021;113(1 Pt 1):11–19. doi:10.1016/j.ygeno.2020.11.021
  • Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019;53(1):1801887. doi:10.1183/13993003.01887-2018
  • Woo KV, Shen IY, Weinheimer CJ, et al. Endothelial FGF signaling is protective in hypoxia-induced pulmonary hypertension. J Clin Invest. 2021;131(17):e141467. doi:10.1172/JCI141467
  • Gallardo-Vara E, Ntokou A, Dave JM, et al. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant. 2023;42(5):544–552. doi:10.1016/j.healun.2022.12.012
  • Xu WJ, Wu Q, He WN, et al. Interleukin-6 and pulmonary hypertension: from physiopathology to therapy. Front Immunol. 2023;14:1181987. doi:10.3389/fimmu.2023.1181987
  • Kucherenko MM, Sang P, Yao J, et al. Elastin stabilization prevents impaired biomechanics in human pulmonary arteries and pulmonary hypertension in rats with left heart disease. Nat Commun. 2023;14(1):4416. doi:10.1038/s41467-023-39934-z
  • Chelladurai P, Seeger W, Pullamsetti SS. Matrix metalloproteinases and their inhibitors in pulmonary hypertension. Eur Respir J. 2012;40(3):766–782. doi:10.1183/09031936.00209911
  • Guo X, Meng Y, Wang Y, et al. Mice lacking 1,4,5-triphosphate inositol type III receptor demonstrate inhibition of hypoxic pulmonary hypertension. Biochem Biophys Res Commun. 2022;629:165–170. doi:10.1016/j.bbrc.2022.09.036
  • Gabani M, Liu J, Ait-Aissa K, et al. MiR-204 regulates type 1 IP3R to control vascular smooth muscle cell contractility and blood pressure. Cell Calcium. 2019;80:18–24. doi:10.1016/j.ceca.2019.03.006
  • Balistrieri A, Makino A, Yuan JX. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca2+ signaling. Physiol Rev. 2023;103(3):1827–1897. doi:10.1152/physrev.00030.2021
  • Pérez L, Muñoz-Durango N, Riedel CA, et al. Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev. 2017;33:41–54. doi:10.1016/j.cytogfr.2016.09.002
  • Silva GF, da Silva JS, de Alencar AKN, et al. Novel p38 Mitogen-Activated Protein Kinase Inhibitor Reverses Hypoxia-Induced Pulmonary Arterial Hypertension in Rats. Pharmaceuticals. 2022;15(7):900. doi:10.3390/ph15070900
  • Pugliese SC, Poth JM, Fini MA, et al. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol. 2015;308(3):L229–L252. doi:10.1152/ajplung.00238.2014
  • Maleszewska M, Moonen JR, Huijkman N, et al. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology. 2013;218(4):443–454. doi:10.1016/j.imbio.2012.05.026
  • Chen PY, Qin L, Baeyens N, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125(12):4514–4528. doi:10.1172/JCI82719
  • Adjuto-Saccone M, Soubeyran P, Garcia J, et al. TNF-α induces endothelial-mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis. 2021;12(7):649. doi:10.1038/s41419-021-03920-4
  • Jang AJ, Chang SS, Park C, et al. PPARγ increases HUWE1 to attenuate NF-κB/p65 and sickle cell disease with pulmonary hypertension. Blood Adv. 2021;5(2):399–413. doi:10.1182/bloodadvances.2020002754
  • Iranmehr A, Stobdan T, Zhou D, et al. Novel insight into the genetic basis of high-altitude pulmonary hypertension in Kyrgyz highlanders. Eur J Hum Genet. 2019;27(1):150–159. doi:10.1038/s41431-018-0270-8
  • Kumar R, Mickael C, Kassa B, et al. Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension. Cardiovasc Res. 2020;116(12):2021–2030. doi:10.1093/cvr/cvz304
  • Moll M, Christmann RB, Zhang Y, et al. Patients with systemic sclerosis-associated pulmonary arterial hypertension express a genomic signature distinct from patients with interstitial lung disease. J Scleroderma Relat Disord. 2018;3(3):242–248. doi:10.1177/2397198318764780