141
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Screening of Lipid Metabolism-Related Genes as Diagnostic Indicators in Chronic Obstructive Pulmonary Disease

ORCID Icon, ORCID Icon, &
Pages 2739-2754 | Received 10 Aug 2023, Accepted 11 Nov 2023, Published online: 28 Nov 2023

References

  • Labaki WW, Rosenberg SR. Chronic obstructive pulmonary disease. Ann Intern Med. 2020;173(3):Itc17–Itc32. doi:10.7326/aitc202008040
  • Y LH, Gao TY, Fang W, et al. Global, regional and national burden of chronic obstructive pulmonary disease over a 30-year period: estimates from the 1990 to 2019 Global Burden of Disease Study. Respirology. 2023;28(1):29–36. doi:10.1111/resp.14349
  • Lange P, Ahmed E, Lahmar ZM, et al. Natural history and mechanisms of COPD. Respirology. 2021;26(4):298–321. doi:10.1111/resp.14007
  • Agustí A, Celli BR, Criner GJ, et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur Respir J. 2023;61(4):2300239. doi:10.1183/13993003.00239-2023
  • S VS, Hartl S, Barnes N, et al. Blood eosinophil counts in the general population and airways disease: a comprehensive review and meta-analysis. Eur Respir J. 2022;59(1):2004590. doi:10.1183/13993003.04590-2020
  • B VA, Subramoniam M, Mathew L. Detection of COPD and lung cancer with electronic nose using ensemble learning methods. Clin Chim Acta. 2021;523:231–238. doi:10.1016/j.cca.2021.10.005
  • Mouronte-Roibás C, Leiro-Fernández V, Ruano-Raviña A, et al. Predictive value of a series of inflammatory markers in COPD for lung cancer diagnosis: a case-control study. Respir Res. 2019;20(1):198. doi:10.1186/s12931-019-1155-2
  • Binson VA, Subramoniam M, Mathew L. Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose. J Breath Res. 2021;15(4). doi:10.1088/1752-7163/ac1326
  • Van der Does AM, Heijink M, Mayboroda OA, et al. Dynamic differences in dietary polyunsaturated fatty acid metabolism in sputum of COPD patients and controls. Biochim Biophys Acta. 2019;1864(3):224–233. doi:10.1016/j.bbalip.2018.11.012
  • Liu X, Zhang H, Si Y, et al. High-coverage lipidomics analysis reveals biomarkers for diagnosis of acute exacerbation of chronic obstructive pulmonary disease. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1201–1202:123278. doi:10.1016/j.jchromb.2022.123278
  • Ben Anes A, Ben Nasr H, Tabka Z, et al. Plasma lipid profiling identifies phosphatidylcholine 34:3 and triglyceride 52:3 as potential markers associated with disease severity and oxidative status in chronic obstructive pulmonary disease. Lung. 2022;200(4):495–503. doi:10.1007/s00408-022-00552-z
  • Wang Y, Chang C, Tian S, et al. Differences in the lipid metabolism profile and clinical characteristics between eosinophilic and non-eosinophilic acute exacerbation of chronic obstructive pulmonary disease. Front Mol Biosci. 2023;10:1204985. doi:10.3389/fmolb.2023.1204985
  • Vicol C, Buculei I, Melinte OE, et al. The lipid profile and biochemical parameters of COPD patients in relation to smoking status. Biomedicines. 2022;10(11):2936. doi:10.3390/biomedicines10112936
  • Mørland JG, Magnus P, Vollset SE, et al. Associations between serum high-density lipoprotein cholesterol levels and cause-specific mortality in a general population of 345 000 men and women aged 20–79 years. Int J Epidemiol. 2023;52(4):1257–1267. doi:10.1093/ije/dyad011
  • Ween MP, White JB, Tran HB, et al. The role of oxidised self-lipids and alveolar macrophage CD1b expression in COPD. Sci Rep. 2021;11(1):4106. doi:10.1038/s41598-021-82481-0
  • Agudelo CW, Kumley BK, Area-Gomez E, et al. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS One. 2020;15(2):e0228279. doi:10.1371/journal.pone.0228279
  • Hannan SE, Harris JO, Sheridan NP, et al. Cigarette smoke alters plasma membrane fluidity of rat alveolar macrophages. Am Rev Respir Dis. 1989;140(6):1668–1673. doi:10.1164/ajrccm/140.6.1668
  • Leuti A, Fazio D, Fava M, et al. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev. 2020;159:133–169. doi:10.1016/j.addr.2020.06.028
  • Liu L, Mo M, Chen X, et al. Targeting inhibition of prognosis-related lipid metabolism genes including CYP19A1 enhances immunotherapeutic response in colon cancer. J Exp Clin Cancer Res. 2023;42(1):85. doi:10.1186/s13046-023-02647-8
  • Luo T, Peng J, Li Q, et al. GDPD5 related to lipid metabolism is a potential prognostic biomarker in neuroblastoma. Int J Mol Sci. 2022;23(22):13740. doi:10.3390/ijms232213740
  • Li L, Liu Y, Liu X, et al. Regulatory roles of external cholesterol in human airway epithelial mitochondrial function through STARD3 signalling. Clin Transl Med. 2022;12(6):e902. doi:10.1002/ctm2.902
  • Jiang Z, Knudsen NH, Wang G, et al. Genetic control of fatty acid β-oxidation in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2017;56(6):738–748. doi:10.1165/rcmb.2016-0282OC
  • B VA, Subramoniam M, Mathew L. Noninvasive detection of COPD and lung cancer through breath analysis using MOS sensor array based e-nose. Expert Rev Mol Diagn. 2021;21(11):1223–1233. doi:10.1080/14737159.2021.1971079
  • Binson VA, Subramoniam M, Sunny Y, et al. Prediction of pulmonary diseases with electronic nose using SVM and XGBoost. IEEE Sens J. 2021;21(18):20886–20895. doi:10.1109/JSEN.2021.3100390
  • Butler LM, Perone Y, Dehairs J, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020;159:245–293. doi:10.1016/j.addr.2020.07.013
  • Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics. 2020;10(16):7053–7069. doi:10.7150/thno.41388
  • Yi M, Li J, Chen S, et al. Emerging role of lipid metabolism alterations in cancer stem cells. J Exp Clin Cancer Res. 2018;37(1):118. doi:10.1186/s13046-018-0784-5
  • Badmus OO, Hillhouse SA, Anderson CD, et al. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci. 2022;136(18):1347–1366. doi:10.1042/cs20220572
  • Agudelo CW, Samaha G, Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids Health Dis. 2020;19(1):122. doi:10.1186/s12944-020-01278-8
  • Kotlyarov S, Kotlyarova A. Anti-inflammatory function of fatty acids and involvement of their metabolites in the resolution of inflammation in chronic obstructive pulmonary disease. Int J Mol Sci. 2021;22(23):12803. doi:10.3390/ijms222312803
  • Suryadevara V, Ramchandran R, Kamp DW, et al. Lipid mediators regulate pulmonary fibrosis: potential mechanisms and signaling pathways. Int J Mol Sci. 2020;21(12):4257. doi:10.3390/ijms21124257
  • Chen H, Li Z, Dong L, et al. Lipid metabolism in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2019;14:1009–1018. doi:10.2147/copd.S196210
  • Lugg ST, Scott A, Parekh D, et al. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax. 2022;77(1):94–101. doi:10.1136/thoraxjnl-2020-216296
  • Shao F, Mao H, Luo T, et al. HPGDS is a novel prognostic marker associated with lipid metabolism and aggressiveness in lung adenocarcinoma. Front Oncol. 2022;12:894485. doi:10.3389/fonc.2022.894485
  • Ouyang L, Qiu D, Fu X, et al. Overexpressing HPGDS in adipose-derived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice. Stem Cell Res Ther. 2022;13(1):395. doi:10.1186/s13287-022-03082-w
  • Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021;12:585887. doi:10.3389/fendo.2021.585887
  • Mei L, Li M, Zhang T. MicroRNA miR-874-3p inhibits osteoporosis by targeting leptin (LEP). Bioengineered. 2021;12(2):11756–11767. doi:10.1080/21655979.2021.2009618
  • Zhang KW, Jia Y, Li YY, et al. LEP and LEPR are possibly a double-edged sword for wound healing. J Cell Physiol. 2023;238(2):355–365. doi:10.1002/jcp.30936
  • Vernooy JH, Ubags ND, Brusselle GG, et al. Leptin as regulator of pulmonary immune responses: involvement in respiratory diseases. Pulm Pharmacol Ther. 2013;26(4):464–472. doi:10.1016/j.pupt.2013.03.016
  • Broekhuizen R, Vernooy JH, Schols AM, et al. Leptin as local inflammatory marker in COPD. Respir Med. 2005;99(1):70–74. doi:10.1016/j.rmed.2004.03.029
  • Hansel NN, Gao L, Rafaels NM, et al. Leptin receptor polymorphisms and lung function decline in COPD. Eur Respir J. 2009;34(1):103–110. doi:10.1183/09031936.00120408
  • Wang B, Fu E, Cao Y, et al. Effect of leptin receptor mutation on the development of chronic bronchitis. Asia Pac J Public Health. 2013;25(4 Suppl):80s–87s. doi:10.1177/1010539513497218
  • Gao P, Zou K, Xiao L, et al. High expression of PTGES3 is an independent predictive poor prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Int Immunopharmacol. 2022;110:108954. doi:10.1016/j.intimp.2022.108954
  • Adekeye A, Agarwal D, Nayak A, et al. PTGES3 is a putative prognostic marker in breast cancer. J Surg Res. 2022;271:154–162. doi:10.1016/j.jss.2021.08.033
  • Sato S, Tomomori-Sato C, Tsai KL, et al. Role for the MED21-MED7 hinge in assembly of the mediator-RNA polymerase II holoenzyme. J Biol Chem. 2016;291(52):26886–26898. doi:10.1074/jbc.M116.756098
  • Tan W, Peng S, Li Z, et al. Identification of therapeutic targets and prognostic biomarkers among genes from the mediator complex family in the hepatocellular carcinoma tumour-immune microenvironment. Comput Math Methods Med. 2022;2022:2021613. doi:10.1155/2022/2021613
  • Nikas JB, Mitanis NT, Nikas EG. Whole exome and transcriptome RNA-sequencing model for the diagnosis of prostate cancer. ACS Omega. 2020;5(1):481–486. doi:10.1021/acsomega.9b02995
  • Lowther J, Naismith JH, Dunn TM, et al. Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans. 2012;40(3):547–554. doi:10.1042/bst20110769
  • Kuo A, Checa A, Niaudet C, et al. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. Elife. 2022;11:e78861. doi:10.7554/eLife.78861
  • Jiang J, Ouyang H, Zhou Q, et al. LPS induces pulmonary microvascular endothelial cell barrier dysfunction by upregulating ceramide production. Cell Signal. 2022;92:110250. doi:10.1016/j.cellsig.2022.110250
  • Medler TR, Petrusca DN, Lee PJ, et al. Apoptotic sphingolipid signaling by ceramides in lung endothelial cells. Am J Respir Cell Mol Biol. 2008;38(6):639–646. doi:10.1165/rcmb.2007-0274OC
  • Gorshkova I, Zhou T, Mathew B, et al. Inhibition of serine palmitoyltransferase delays the onset of radiation-induced pulmonary fibrosis through the negative regulation of sphingosine kinase-1 expression. J Lipid Res. 2012;53(8):1553–1568. doi:10.1194/jlr.M026039
  • Pizzini A, Lunger L, Sonnweber T, et al. The role of omega-3 fatty acids in the setting of coronary artery disease and COPD: a review. Nutrients. 2018;10(12):1864. doi:10.3390/nu10121864
  • Rutting S, Papanicolaou M, Xenaki D, et al. Dietary ω-6 polyunsaturated fatty acid arachidonic acid increases inflammation, but inhibits ECM protein expression in COPD. Respir Res. 2018;19(1):211. doi:10.1186/s12931-018-0919-4
  • Atlantis E, Cochrane B. The association of dietary intake and supplementation of specific polyunsaturated fatty acids with inflammation and functional capacity in chronic obstructive pulmonary disease: a systematic review. Int J Evid Based Healthc. 2016;14(2):53–63. doi:10.1097/xeb.0000000000000056
  • Lee-Sarwar K, Kelly RS, Lasky-Su J, et al. Dietary and plasma polyunsaturated fatty acids are inversely associated with asthma and atopy in early childhood. J Allergy Clin Immunol Pract. 2019;7(2):529–538.e528. doi:10.1016/j.jaip.2018.07.039
  • Teopompi E, Risé P, Pisi R, et al. Arachidonic acid and docosahexaenoic acid metabolites in the airways of adults with cystic fibrosis: effect of docosahexaenoic acid supplementation. Front Pharmacol. 2019;10:938. doi:10.3389/fphar.2019.00938
  • Balgoma D, Yang M, Sjödin M, et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur Respir J. 2016;47(6):1645–1656. doi:10.1183/13993003.01080-2015
  • Gong J, Zhao H, Liu T, et al. Cigarette smoke reduces fatty acid catabolism, leading to apoptosis in lung endothelial cells: implication for pathogenesis of COPD. Front Pharmacol. 2019;10:941. doi:10.3389/fphar.2019.00941
  • Hildebrand CB, Lichatz R, Pich A, et al. Short-chain fatty acids improve inflamm-aging and acute lung injury in old mice. Am J Physiol Lung Cell Mol Physiol. 2023;324(4):L480–L492. doi:10.1152/ajplung.00296.2022
  • Warnakulasuriya SN, Rupasinghe H. Novel long chain fatty acid derivatives of quercetin-3-O-glucoside reduce cytotoxicity induced by cigarette smoke toxicants in human fetal lung fibroblasts. Eur J Pharmacol. 2016;781:128–138. doi:10.1016/j.ejphar.2016.04.011
  • Liu P, Zhang H, Zeng H, et al. LncRNA CASC2 is involved in the development of chronic obstructive pulmonary disease via targeting miR-18a-5p/IGF1 axis. Ther Adv Respir Dis. 2021;15:17534666211028072. doi:10.1177/17534666211028072
  • Shen Q, Zheng J, Wang X, et al. LncRNA SNHG5 regulates cell apoptosis and inflammation by miR-132/PTEN axis in COPD. Biomed Pharmacother. 2020;126:110016. doi:10.1016/j.biopha.2020.110016
  • Liu P, Wang Y, Zhang N, et al. Comprehensive identification of RNA transcripts and construction of RNA network in chronic obstructive pulmonary disease. Respir Res. 2022;23(1):154. doi:10.1186/s12931-022-02069-8
  • Feng X, Dong H, Li B, et al. Integrative analysis of the expression profiles of whole coding and non-coding RNA transcriptomes and construction of the competing endogenous RNA networks for chronic obstructive pulmonary disease. Front Genet. 2023;14:1050783. doi:10.3389/fgene.2023.1050783
  • Dua P, Mishra A, Reeta KH. Lp-PLA2 as a biomarker and its possible associations with SARS-CoV-2 infection. Biomark Med. 2022;16(10):821–832. doi:10.2217/bmm-2021-1129
  • Deng M, Yin Y, Zhang Q, et al. Identification of inflammation-related biomarker Lp-PLA2 for patients with COPD by comprehensive analysis. Front Immunol. 2021;12:670971. doi:10.3389/fimmu.2021.670971
  • Zhao X, Yue Y, Wang X, et al. Bioinformatics analysis of PLA2G7 as an immune-related biomarker in COPD by promoting expansion and suppressive functions of MDSCs. Int Immunopharmacol. 2023;120:110399. doi:10.1016/j.intimp.2023.110399
  • Woodruff PG, Ellwanger A, Solon M, et al. Alveolar macrophage recruitment and activation by chronic second hand smoke exposure in mice. COPD. 2009;6(2):86–94. doi:10.1080/15412550902751738
  • Gok M, Cicek C, Sari S, et al. Novel activity of human BChE: lipid hydrolysis. Biochimie. 2023;204:127–135. doi:10.1016/j.biochi.2022.09.008
  • Halu A, Liu S, Baek SH, et al. Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Hum Mol Genet. 2019;28(14):2352–2364. doi:10.1093/hmg/ddz069
  • Sicinska P, Bukowska B, Pajak A, et al. Decreased activity of butyrylcholinesterase in blood plasma of patients with chronic obstructive pulmonary disease. Arch Med Sci. 2017;13(3):645–651. doi:10.5114/aoms.2016.60760
  • Ben Anes A, Ben Nasr H, Garrouch A, et al. Alterations in acetylcholinesterase and butyrylcholinesterase activities in chronic obstructive pulmonary disease: relationships with oxidative and inflammatory markers. Mol Cell Biochem. 2018;445(1–2):1–11. doi:10.1007/s11010-017-3246-z