150
Views
0
CrossRef citations to date
0
Altmetric
STUDY PROTOCOL

Characteristics of Serum Autoantibody Repertoire and Immune Subgroup Variation of Tuberculosis-Associated Obstructive Pulmonary Disease

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & show all
Pages 2867-2886 | Received 09 Aug 2023, Accepted 16 Nov 2023, Published online: 04 Dec 2023

References

  • Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev. 2023;103(2):1059–1093. doi:10.1152/physrev.00036.2021
  • Aggarwal D, Gupta A, Janmeja AK, et al. Evaluation of tuberculosis-associated chronic obstructive pulmonary disease at a tertiary care hospital: a case-control study. Lung India. 2017;34(5):415–419. doi:10.4103/lungindia.lungindia_522_16
  • Mp S, Mohanty Mohapatra M, Mahesh Babu V, et al. Metabolic syndrome in post-pulmonary tuberculosis-associated obstructive airway disease: a cross-sectional analytical study. Cureus. 2022;14(3):e23640. doi:10.7759/cureus.23640
  • Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–2242. doi:10.1016/S0140-6736(22)00470-6
  • Allwood BW, Myer L, Bateman ED. A systematic review of the association between pulmonary tuberculosis and the development of chronic airflow obstruction in adults. Respiration. 2013;86(1):76–85. doi:10.1159/000350917
  • Starshinova A, Malkova A, Zinchenko Y, et al. Identification of autoimmune markers in pulmonary tuberculosis. Front Immunol. 2022;13:1059714. doi:10.3389/fimmu.2022.1059714
  • Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and autoimmunity. Pathophysiology. 2022;29(2):298–318. doi:10.3390/pathophysiology29020022
  • Chen S, Chen J, Chen L, et al. Mycobacterium tuberculosis infection is associated with the development of erythema nodosum and nodular vasculitis. PLoS One. 2013;8(5):e62653. doi:10.1371/journal.pone.0062653
  • Hardy R. R B-1 B cell development. J Immunol. 2006;177(5):2749–2754. doi:10.4049/jimmunol.177.5.2749
  • Campisi L, Barbet G, Ding Y, et al. Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nature Immunol. 2016;17(9):1084–1092. doi:10.1038/ni.3512
  • Schrijver B, Hardjosantoso H, Ten Berge J, et al. No evidence for circulating retina specific autoreactive T-cells in latent tuberculosis-associated uveitis and sarcoid uveitis. Ocul Immunol Inflamm. 2021;29(5):883–889. doi:10.1080/09273948.2019.1698752
  • Tagirasa R, Parmar S, Barik MR, et al. Autoreactive T cells in immunopathogenesis of TB-associated uveitis. Invest Ophthalmol Vis Sci. 2017;58(13):5682–5691. doi:10.1167/iovs.17-22462
  • Kuo CJ, Ptak CP, Hsieh CL, et al. Elastin, a novel extracellular matrix protein adhering to mycobacterial antigen 85 complex. J Biol Chem. 2013;288(6):3886–3896. doi:10.1074/jbc.M112.415679
  • Patel KJ, Cheng Q, Stephenson S, et al. Emphysema-associated autoreactive antibodies exacerbate post-lung transplant ischemia-reperfusion injury. Am J Respir Cell Mol Biol. 2019;60(6):678–686. doi:10.1165/rcmb.2018-0224OC
  • Curtis JL, Freeman CM, Hogg JC. The immunopathogenesis of chronic obstructive pulmonary disease: insights from recent research. Proc Am Thorac Soc. 2007;4(7):512–521. doi:10.1513/pats.200701-002FM
  • Luo XM, Liu XY, Tang JH, et al. Autoantibodies against CD80 in patients with COPD. Clin Transl Immunol. 2016;5(10):e103. doi:10.1038/cti.2016.57
  • Wen L, Krauss-Etschmann S, Petersen F, et al. Autoantibodies in chronic obstructive pulmonary disease. Front Immunol. 2018;9:66. doi:10.3389/fimmu.2018.00066
  • Nakiyingi L, Nankabirwa H, Lamorde M. Tuberculosis diagnosis in resource-limited settings: clinical use of GeneXpert in the diagnosis of smear-negative PTB: a case report. Afr Health Sci. 2013;13(2):522–524. doi:10.4314/ahs.v13i2.46
  • Li FS, Zhang YL, Li Z, et al. Randomized, double-blind, placebo-controlled superiority trial of the Yiqigubiao pill for the treatment of patients with chronic obstructive pulmonary disease at a stable stage. Exp Ther Med. 2016;12(4):2477–2488. doi:10.3892/etm.2016.3680
  • Johannet P, Liu W, Fenyo D. Baseline serum autoantibody signatures predict recurrence and toxicity in melanoma patients receiving adjuvant immune checkpoint blockade. Clin Cancer Res. 2022;28(18):4121–4130. doi:10.1158/1078-0432.CCR-22-0404
  • Cheng P, Wang L, Gong W. In silico analysis of peptide-based biomarkers for the diagnosis and prevention of latent tuberculosis infection. Front Microbiol. 2022;13:947852. doi:10.3389/fmicb.2022.947852
  • Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, et al. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform. 2015;53:405–414. doi:10.1016/j.jbi.2014.11.003
  • Place DE, Kanneganti T-D. Place D EKanneganti T D The innate immune system and cell death in autoinflammatory and autoimmune disease. Curr Opin Immunol. 2020;67:95–105. doi:10.1016/j.coi.2020.10.013
  • Sarkar M, Madabhavi I, Kumar K. Tuberculosis associated chronic obstructive pulmonary disease. Clin Respir J. 2017;11(3):285–295. doi:10.1111/crj.12621
  • Yakar HI, Gunen H, Pehlivan E, et al. The role of tuberculosis in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:323–329. doi:10.2147/COPD.S116086
  • Katare S, Harsha A. Correlations between inflammatory biomarkers in tuberculosis-associated obstructive pulmonary disease patients with anxiety and depression. Cureus. 2022;14(3):e22742. doi:10.7759/cureus.22742
  • Oh JY, Lee YS, Min KH, et al. Difference in systemic inflammation and predictors of acute exacerbation between smoking-associated COPD and tuberculosis-associated COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:3381–3387. doi:10.2147/COPD.S177371
  • Park HJ, Byun MK, Kim HJ. History of pulmonary tuberculosis affects the severity and clinical outcomes of COPD. Respirology (Carlton, Vic). 2018;23(1):100–106. doi:10.1111/resp.13147
  • Allwood BW, Rigby J, Griffith-Richards S, et al. Histologically confirmed tuberculosis-associated obstructive pulmonary disease. Int J Tuberc Lung Dis. 2019;23(5):552–554. doi:10.5588/ijtld.18.0722
  • Starshinova A, Malkova А, Kudryavtsev I, et al. Tuberculosis and autoimmunity: common features. Tuberculosis (Edinb). 2022;134:102202. doi:10.1016/j.tube.2022.102202
  • Mukherjee M, Bulir CD, Radford K, et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J Allergy Clin Immunol. 2018;141(4):1269–1279. doi:10.1016/j.jaci.2017.06.033
  • Ma A, Wen L, Yin J, et al. Serum levels of autoantibodies against extracellular antigens and neutrophil granule proteins increase in patients with COPD compared to non-COPD smokers. Int J Chronic Obstr. 2020;15:189–200. doi:10.2147/COPD.S235903
  • Lee DS, WRojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nature Rev Drug Discov. 2021;20(3):179–199. doi:10.1038/s41573-020-00092-2
  • Eggenhuizen PJ, Ng BH, Ooi JD. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int J Mol Sci. 2020;21(19):7015. doi:10.3390/ijms21197015
  • Quiros-Roldan E, Sottini A, Signorini SG, et al. Autoantibodies to Interferons in Infectious Diseases. Viruses. 2023;15(5):1215. doi:10.3390/v15051215
  • Nagele EP, Han M, Acharya NK, et al. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS One. 2013;8(4):e60726. doi:10.1371/journal.pone.0060726
  • Byrne R, Todd I, Tighe PJ, et al. Autoantibodies in chronic obstructive pulmonary disease: a systematic review. Immunol Lett. 2019;214:8–15. doi:10.1016/j.imlet.2019.08.007
  • Cass SP, Dvorkin-Gheva A, Yang Y, et al. Differential expression of sputum and serum autoantibodies in patients with chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2021;320(6):L1169–l1182.
  • Shen CY, Hsieh SC, Yu CL, et al. Autoantibody prevalence in active tuberculosis: reactive or pathognomonic? BMJ Open. 2013;3(7):e002665. doi:10.1136/bmjopen-2013-002665
  • Goodridge A, Cueva C, Lahiff M, et al. Anti-phospholipid antibody levels as biomarker for monitoring tuberculosis treatment response. Tuberculosis (Edinb). 2012;92(3):243–247. doi:10.1016/j.tube.2012.02.004
  • Apostólico JDS, Lunardelli VAS, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: classification, modus operandi, and licensing. J Immunol Res. 2016;2016:1459394. doi:10.1155/2016/1459394
  • You Z, Li Y, Wang Q. The Clinical Significance of Hepatic CD69(+) CD103(+) CD8(+) resident-memory T cells in autoimmune hepatitis. Hepatology (Baltimore, Md). 2021;74(2):847–863. doi:10.1002/hep.31739
  • Rubtsov AV, Marrack P, Rubtsova K. T-bet expressing B cells – novel target for autoimmune therapies? Cel Immunol. 2017;321:35–39. doi:10.1016/j.cellimm.2017.04.011
  • Imperiale BR, García A, Minotti A, et al. Th22 response induced by Mycobacterium tuberculosis strains is closely related to severity of pulmonary lesions and bacillary load in patients with multi-drug-resistant tuberculosis. Clin Exp Immunol. 2021;203(2):267–280. doi:10.1111/cei.13544
  • Li L, Jiang Y, Lao S, et al. Mycobacterium tuberculosis-specific IL-21+IFN-γ+CD4+ T cells are regulated by IL-12. PLoS One. 2016;11(1):e0147356. doi:10.1371/journal.pone.0147356
  • Funes SC, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186–195. doi:10.1111/imm.12910
  • Kushnareva Y, Mathews IT, Andreyev AY. Functional Analysis of Immune Signature Genes in Th1* Memory Cells Links ISOC1 and Pyrimidine Metabolism to IFN-γ and IL-17 Production. J Immunol. 2021;206(6):1181–1193. doi:10.4049/jimmunol.2000672
  • Pathak VK, Singh I, Singh SV, et al. Mimicking B and T cell epitopes between Mycobacterium leprae and host as predictive biomarkers in type 1 reaction in leprosy. Sci Rep. 2021;11(1):24431. doi:10.1038/s41598-021-04135-5