138
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Network Pharmacology and Experimental Verification Reveal the Regulatory Mechanism of Chuanbeimu in Treating Chronic Obstructive Pulmonary Disease

, , , , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 799-813 | Received 17 Oct 2023, Accepted 15 Feb 2024, Published online: 21 Mar 2024

References

  • Halpin DMG, Criner GJ, Papi A., et al. Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2021;203:24–36. doi:10.1164/rccm.202009-3533SO
  • Singh D, D’Urzo AD, Chuecos F, et al. Reduction in clinically important deterioration in chronic obstructive pulmonary disease with Aclidinium/formoterol. Respir Res. 2017;18:106. doi:10.1186/s12931-017-0583-0
  • Jolobe OMP. Pulmonary thromboembolism, blood gas status and left ventricular function in COPD. Int J Cardiol. 2019;292:211. doi:10.1016/j.ijcard.2019.05.062
  • Kart L, Akkoyunlu ME, Bayram M, et al. COPD: an underdiagnosed disease at hospital environment. Wiener klinische Wochenschrift. 2014;126:73–78. doi:10.1007/s00508-013-0458-4
  • Terry PD, Dhand R. Inhalation Therapy for Stable COPD: 20 Years of GOLD Reports. Adv Ther. 2020;37:1812–1828. doi:10.1007/s12325-020-01289-y
  • Uwagboe I, Adcock IM, Lo Bello F, et al. New drugs under development for COPD. Minerva Med. 2022;113:471–496. doi:10.23736/s0026-4806.22.08024-7
  • Vogelmeier CF, Román-Rodríguez M, Singh D, et al. Goals of COPD treatment: focus on symptoms and exacerbations. Respir Med. 2020;166:105938. doi:10.1016/j.rmed.2020.105938
  • Liu J, Liu J, Tong X, et al. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis. Drug Des Devel Ther. 2021;15:3255–3276. doi:10.2147/dddt.S319786
  • Li JS. International clinical practice guideline of Chinese medicine: chronic obstructive pulmonary disease. World J Traditional Chin Med. 2020;6:39.
  • Cao X, Wang Y, Chen Y, et al. Advances in traditional Chinese medicine for the treatment of chronic obstructive pulmonary disease. J Ethnopharmacol. 2023;307:116229. doi:10.1016/j.jep.2023.116229
  • Wang H, Hou Y, Ma X, et al. Multi-omics analysis reveals the mechanisms of action and therapeutic regimens of traditional Chinese medicine, Bufei Jianpi granules: implication for COPD drug discovery. Phytomedicine. 2022;98:153963. doi:10.1016/j.phymed.2022.153963
  • Jia Y, He T, Wu D, et al. The treatment of Qibai Pingfei Capsule on chronic obstructive pulmonary disease may be mediated by Th17/Treg balance and gut-lung axis microbiota. J Transl Med. 2022;20:281. doi:10.1186/s12967-022-03481-w
  • Wang D, Chen X, Atanasov AG, et al. Plant resource availability of medicinal fritillaria species in traditional producing regions in Qinghai-Tibet plateau. Front Pharmacol. 2017;8:502. doi:10.3389/fphar.2017.00502
  • Li HJ, Jiang Y, Li P. Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Nat Product Rep. 2006;23:735–752. doi:10.1039/b609306j
  • Fan B, Li T, Xu S, et al. Efficient, accurate and comprehensive evaluation of polysaccharides from Fritillaria and their inhibitory responses to mouse inflammation. Food Funct. 2019;10:7913–7925. doi:10.1039/c9fo02209k
  • Lin Q, Qu M, Zhou B, et al. Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation effects of imperialine. J Control Release. 2019;311–312:104–116. doi:10.1016/j.jconrel.2019.08.037
  • Wang DD, Feng Y, Li Z, et al. In vitro and in vivo antitumor activity of bulbus fritillariae cirrhosae and preliminary investigation of its mechanism. Nutr Cancer. 2014;66:441–452. doi:10.1080/01635581.2013.878737
  • Quan Y, Li L, Yin Z, et al. Bulbus fritillariae cirrhosae as a respiratory medicine: is there a potential drug in the treatment of COVID-19? Front Pharmacol. 2021;12:784335. doi:10.3389/fphar.2021.784335
  • Cunningham AB, Brinckmann JA, Pei SJ, et al. High altitude species, high profits: can the trade in wild harvested Fritillaria cirrhosa (Liliaceae) be sustained? J Ethnopharmacol. 2018;223:142–151. doi:10.1016/j.jep.2018.05.004
  • Guo F, Tang X, Zhang W, et al. Exploration of the mechanism of traditional Chinese medicine by AI approach using unsupervised machine learning for cellular functional similarity of compounds in heterogeneous networks, XiaoErFuPi granules as an example. Pharmacol Res. 2020;160:105077. doi:10.1016/j.phrs.2020.105077
  • Zhang JL, Wang H, Pi HF, et al. Structural analysis and antitussive evaluation of five novel esters of verticinone and bile acids. Steroids. 2009;74:424–434. doi:10.1016/j.steroids.2008.12.007
  • Wang D, Du Q, Li H, et al. The isosteroid alkaloid imperialine from bulbs of fritillaria cirrhosa mitigates pulmonary functional and structural impairment and suppresses inflammatory response in a COPD-like rat model. Mediators Inflammation. 2016;2016:4192483. doi:10.1155/2016/4192483
  • Pai M, Er-Bu A, Wu Y, et al. Total alkaloids of bulbus of Fritillaria cirrhosa alleviate bleomycin-induced inflammation and pulmonary fibrosis in rats by inhibiting TGF-β and NF-κB signaling pathway. Food Nut Res. 2023:67. doi:10.29219/fnr.v67.10292
  • Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chinese J Nat Med. 2013;11:110–120. doi:10.1016/s1875-5364(13)60037-0
  • Zhao P, Li J, Yang L, et al. Integration of transcriptomics, proteomics, metabolomics and systems pharmacology data to reveal the therapeutic mechanism underlying Chinese herbal Bufei Yishen formula for the treatment of chronic obstructive pulmonary disease. Mol Med Rep. 2018;17:5247–5257. doi:10.3892/mmr.2018.8480
  • Li T, Guo R, Zong Q, et al. Application of molecular docking in elaborating molecular mechanisms and interactions of supramolecular cyclodextrin. Carbohydr Polym. 2022;276:118644. doi:10.1016/j.carbpol.2021.118644
  • Hamza S, Abid A, Khanum A, et al. 3D-QSAR, docking and molecular dynamics simulations of novel Pyrazolo-pyridazinone derivatives as covalent inhibitors of FGFR1: a scientific approach for possible anticancer agents. J Biomol Struct Dyn. 2023:1–15. doi:10.1080/07391102.2023.2212306
  • Raza A, Chohan TA, Sarfraz M, et al. Molecular modeling of pyrrolo-pyrimidine based analogs as potential FGFR1 inhibitors: a scientific approach for therapeutic drugs. J Biomol Struct Dyn. 2023;41:14358–14371. doi:10.1080/07391102.2023.2187638
  • Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminf. 2014;6:13. doi:10.1186/1758-2946-6-13
  • Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci. 2012;13:6964–6982. doi:10.3390/ijms13066964
  • Rebhan M, Chalifa-Caspi V, Prilusky J, et al. GeneCards: integrating information about genes, proteins and diseases. Trends Genet. 1997;13:163. doi:10.1016/s0168-9525(97)01103-7
  • von Mering C, Huynen M, Jaeggi D, et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;(31):258–261. doi:10.1093/nar/gkg034
  • Dennis G, Sherman BT, Hosack DA, et al. DAVID: database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:3.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi:10.1101/gr.1239303
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi:10.1093/nar/28.1.235
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461. doi:10.1002/jcc.21334
  • Zhang M, Tang J, Shan H, et al. p66Shc mediates mitochondrial dysfunction dependent on PKC activation in airway epithelial cells induced by cigarette smoke. Oxid Med Cell Longev. 2018;2018:5837123. doi:10.1155/2018/5837123
  • Chen T, Zhong F, Yao C, et al. A systematic review on traditional uses, sources, phytochemistry, pharmacology, pharmacokinetics, and toxicity of fritillariae cirrhosae bulbus. Evid Based Complement Alternat Med. 2020;2020:1536534. doi:10.1155/2020/1536534
  • Wang D, Zhu J, Wang S, et al. Antitussive, expectorant and anti-inflammatory alkaloids from bulbus fritillariae cirrhosae. Fitoterapia. 2011;82:1290–1294. doi:10.1016/j.fitote.2011.09.006
  • Liu S, Yang T, Ming TW, et al. Isosteroid alkaloids from Fritillaria cirrhosa bulbus as inhibitors of cigarette smoke-induced oxidative stress. Fitoterapia. 2020;140:104434. doi:10.1016/j.fitote.2019.104434
  • Chen L, Li D, Zhang G, et al. Pharmacokinetics, tissue distribution and excretion of peimisine in rats assessed by liquid chromatography-tandem mass spectrometry. Arch Pharmacal Res. 2015;38:1138–1146. doi:10.1007/s12272-014-0434-1
  • Jin X, Gao X, Lan M, et al. Study the mechanism of peimisine derivatives on NF-κB inflammation pathway on mice with acute lung injury induced by lipopolysaccharide. Chem Biol Drug Des. 2022;99:717–726. doi:10.1111/cbdd.14013
  • Simpson JL, Phipps S, Gibson PG. Inflammatory mechanisms and treatment of obstructive airway diseases with neutrophilic bronchitis. Pharmacol Ther. 2009;124:86–95. doi:10.1016/j.pharmthera.2009.06.004
  • Chung S, Vu S, Filosto S, et al. Src regulates cigarette smoke-induced ceramide generation via neutral sphingomyelinase 2 in the airway epithelium. Am J Respir Cell Mol Biol. 2015;52:738–748. doi:10.1165/rcmb.2014-0122OC
  • Nielsen AO, Jensen CS, Arredouani MS, et al. Variants of the ADRB2 gene in COPD: systematic review and meta-analyses of disease risk and treatment response. Copd. 2017;14:451–460. doi:10.1080/15412555.2017.1320370
  • Chi Y, Di Q, Han G, et al. Mir-29b mediates the regulation of Nrf2 on airway epithelial remodeling and Th1/Th2 differentiation in COPD rats. Saudi J Biol Sci. 2019;26:1915–1921. doi:10.1016/j.sjbs.2019.07.011
  • Ning W, Dong Y, Sun J, et al. Cigarette smoke stimulates matrix metalloproteinase-2 activity via EGR-1 in human lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 2007;36:480–490. doi:10.1165/rcmb.2006-0106OC
  • Ben Nasr H, Bchir S, Ben Anes A, et al. The −786 T/C polymorphism of NOS3 gene is a susceptibility marker of COPD among Tunisians that correlates with nitric oxide levels and airflow obstruction. Cytokine. 2017;93:66–73. doi:10.1016/j.cyto.2017.05.010
  • Barreiro E, Gea J, Corominas JM, et al. Nitric oxide synthases and protein oxidation in the quadriceps femoris of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2003;29:771–778. doi:10.1165/rcmb.2003-0138OC
  • Ito H, Matsushita S, Ishikawa S, et al. Significant correlation between endothelial nitric oxide synthase (eNOS) expression and alveolar repair in elastase-induced rat pulmonary emphysema. Surg Today. 2013;43:293–299. doi:10.1007/s00595-012-0293-7
  • Csoma B, Bikov A, Nagy L, et al. Dysregulation of the endothelial nitric oxide pathway is associated with airway inflammation in COPD. Respir Res. 2019;20:156. doi:10.1186/s12931-019-1133-8
  • Li X, Wei S, Niu S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med. 2022;144:105389. doi:10.1016/j.compbiomed.2022.105389
  • Jiao X, Jin X, Ma Y, et al. A comprehensive application: molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem. 2021;90:107402. doi:10.1016/j.compbiolchem.2020.107402
  • Nie YC, Wu H, Li PB, et al. Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: to establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2012;25:349–356. doi:10.1016/j.pupt.2012.06.004
  • Lixuan Z, Jingcheng D, Wenqin Y, et al. Baicalin attenuates inflammation by inhibiting NF-kappaB activation in cigarette smoke induced inflammatory models. Pulm Pharmacol Ther. 2010;23:411–419. doi:10.1016/j.pupt.2010.05.004
  • Lin H, Wang C, Yu H, et al. Protective effect of total Saponins from American ginseng against cigarette smoke-induced COPD in mice based on integrated metabolomics and network pharmacology. Biomed Pharmacother. 2022;149:112823. doi:10.1016/j.biopha.2022.112823
  • Yuan Q, Jiang YW, Fang QH. Improving effect of Sivelestat on lipopolysaccharide-induced lung injury in rats. APMIS. 2014;122:810–817. doi:10.1111/apm.12222
  • Barnes PJ. Chronic obstructive pulmonary disease * 12: new treatments for COPD. Thorax. 2003;58:803–808. doi:10.1136/thorax.58.9.803