57
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Circular RNA Expression of Peripheral Blood Mononuclear Cells Associated with Risk of Acute Exacerbation in Smoking Chronic Obstructive Pulmonary Disease

ORCID Icon, , , , , & ORCID Icon show all
Pages 789-797 | Received 30 Nov 2023, Accepted 13 Mar 2024, Published online: 20 Mar 2024

References

  • Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease; 2023. Available from: https://goldcopd.org/2023-gold-report-2. Accessed March 14, 2024.
  • Soriano JB, Kendrick PJ, Paulson KR, et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med. 2020;8(6):585–596. doi:10.1016/S2213-2600(20)30105-3
  • Adeloye D, Song P, Zhu Y, et al. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modeling analysis. Lancet Respir Med. 2022;10(5):447–458. doi:10.1016/S2213-2600(21)00511-7
  • Fang L, Gao P, Bao H, et al. Chronic obstructive pulmonary disease in China: a nationwide prevalence study. Lancet Respir Med. 2018;6(6):421–430. doi:10.1016/S2213-2600(18)30103-6
  • Zinellu A. Clinical significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in acute exacerbations of COPD: present and future. Eur Respir Rev. 2022;31(166):220095. doi:10.1183/16000617.0095-2022
  • Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44. doi:10.1016/j.pharmthera.2018.01.010
  • Kong P, Yu Y, Wang L, et al. circ-Sirt1 controls NF-kB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res. 2019;4(7):3580–3593. doi:10.1093/nar/gkz141
  • Conn SJ, Pillman K, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–1134. doi:10.1016/j.cell.2015.02.014
  • Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: identification, biogenesis and function. BBA. 2016;1859(1):163–168. doi:10.1016/j.bbagrm.2015.07.007
  • Wang N, Wang Q, Du T, et al. The potential roles of exosomes in chronic obstructive pulmonary disease. Front Med. 2021;7:618506. doi:10.3389/fmed.2020.618506
  • Lu H, Yang Y, Kuang D, Liu P, Yang J. Expression profile of circRNA in peripheral blood mononuclear cells of patients with rheumatoid arthritis. BMC Med Genomics. 2022;15(1):77. doi:10.1186/s12920-022-01225-9
  • Chen X The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer. 2022;2:1.
  • Guo G, Wang H, Ye L, Lin K, Li B, Xue X, Zhang H. Hsa_circ_0000479 as a Novel Diagnostic Biomarker of Systemic Lupus Erythematosus. Front Immunol. 2019;10:464046.
  • Zhou H, Gan X, He S, et al. Identification of circular RNA BTBD7_hsa_circ_0000563 as a novel biomarker for coronary artery disease and the functional discovery of BTBD7_hsa_circ_0000563 based on peripheral blood mononuclear cells: a case-control study. Clin Proteomics. 2022;19:37.
  • Zhao Y, Zheng R, Chen J, Ning D. CircRNA CDR1as/Mir-641/HOXA9 Pathway-Regulated Stemness Contributes to Cisplatin Resistance in Non-Small Cell Lung Cancer (NSCLC). Cancer Cell International; 2020.
  • Yin YD. Differential circRNA expression profiles in peripheral blood mononuclear cells among mild and severe influenza-associated pneumonia patients. Nat Med J China. 2021;2:1.
  • Qian Z. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBio Med. 2018;27:18–26.
  • Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–2242. doi:10.1016/S0140-6736(22)00470-6
  • Mathyssen C, Aelbrecht C, Serré J, et al. Local expression profiles of vitamin D-related genes in airways of COPD patients. Respir Res. 2020;21(1):137. doi:10.1186/s12931-020-01405-0
  • Ko FW, Chan KP, Hui DS, et al. Acute exacerbation of COPD. Respirology. 2016;21(7):1152–1165. doi:10.1111/resp.12780
  • Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;19(1):30. doi:10.1186/s12943-020-1135-7
  • Meng Q, Wang J, Cui J, et al. Prediction of COPD acute exacerbation in response to air pollution using exosomal circRNA profile and Machine learning. Environ Int. 2022;168:107469. doi:10.1016/j.envint.2022.107469
  • Khan S, Kaihara KA. Single-cell RNA-sequencing of peripheral blood mononuclear cells with ddSEQ. Single Cell Meth. 2019;1979:155–176.
  • Bahr TM, Hughes GJ, Armstrong M, et al. Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2013;49(2):316–323. doi:10.1165/rcmb.2012-0230OC
  • Liu Q. For COPD, regulation of miR-515-5p by hsa_circ_0061052, acting via the FoxC1/Snail pathway, is involved in cigarette smoke-induced airway remodeling; 2020. Available from: https://www.researchsquare.com/article/rs-15783/v1. Accessed March 14, 2024.
  • Chen -L-L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–490. doi:10.1038/s41580-020-0243-y
  • Duan R, Niu H, Yu T, et al. Identification and bioinformatic analysis of circular RNA expression in peripheral blood mononuclear cells from patients with chronic obstructive pulmonary disease. Int J Chronic Obstr. 2020;15:1391–1401. doi:10.2147/COPD.S252896
  • Zhou L, Wu B, Yang J, et al. Knockdown of circFOXO3 ameliorates cigarette smoke-induced lung injury in mice. Respir Res. 2021;22(1):294. doi:10.1186/s12931-021-01883-w
  • Xue M, Peng N, Zhu X, Zhang H. Hsa_circ_0006872 promotes cigarette smoke-induced apoptosis, inflammation, and oxidative stress in HPMECs and BEAS-2B cells through the miR-145-5p/NF-κB axis. Biochem Biophys Res Commun. 2021;534:553–560. doi:10.1016/j.bbrc.2020.11.044
  • Miao R, Wang Y, Wan J, et al. Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension. Medicine. 2017;96(27):e7354. doi:10.1097/MD.0000000000007354
  • Lee H. Targeting insulin-like growth factor-I and insulin-like growth factor–binding protein-3 signaling pathways. A novel therapeutic approach for asthma. Am J Respir Cell Mol Biol. 2014;50(4):667–677. doi:10.1165/rcmb.2013-0397TR
  • Tsuyusaki J, Kuroda F, Kasuya Y, et al. Cigarette smoke-induced pulmonary inflammation is attenuated in CD69-deficient mice. J Recep Sig Transd. 2011;31(6):434–439. doi:10.3109/10799893.2011.631929
  • Zeng N, Wang T, Chen M, et al. Cigarette smoke extract alters genome‐wide profiles of circular RNAs and mRNAs in primary human small airway epithelial cells. J Cell Mol Med. 2019;23(8):5532–5541. doi:10.1111/jcmm.14436
  • Gaffey K, Reynolds S, Plumb J, Kaur M, Singh D. Increased phosphorylated p38 mitogen-activated protein kinase in COPD lungs. Eur Respir J. 2013;42(1):28–41. doi:10.1183/09031936.00170711
  • Chung KF. p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest. 2011;139(6):1470–1479. doi:10.1378/chest.10-1914
  • Wu D, Yuan Y, Lin Z, et al. Cigarette smoke extract induces placental growth factor release from human bronchial epithelial cells via ROS/MAPK(ERK-1/2)/Egr-1 axis. COPD. 2016;11:3031–3042. doi:10.2147/COPD.S120849