196
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Preserved Ratio Impaired Spirometry (PRISm): A Global Epidemiological Overview, Radiographic Characteristics, Comorbid Associations, and Differentiation from Chronic Obstructive Pulmonary Disease

ORCID Icon, , , , , & show all
Pages 753-764 | Received 03 Dec 2023, Accepted 12 Mar 2024, Published online: 15 Mar 2024

References

  • Lange P, Celli B, Agusti A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015;373(2):111–122. doi:10.1056/NEJMoa1411532
  • Celli BR, Wedzicha JA, Drazen JM. Update on clinical aspects of chronic Obstructive pulmonary disease. N Engl J Med. 2019;381(13):1257–1266. doi:10.1056/NEJMra1900500
  • Wan ES, Castaldi PJ, Cho MH, et al. Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. Respir Res. 2014;15(1):89. doi:10.1186/s12931-014-0089-y
  • Kaise T, Sakihara E, Tamaki K, et al. Prevalence and characteristics of individuals with preserved ratio impaired spirometry (PRISm) and/or impaired lung function in Japan: the OCEAN study. Int J Chron Obstruct Pulmon Dis. 2021;16:2665–2675. doi:10.2147/COPD.S322041
  • Washio Y, Sakata S, Fukuyama S, et al. Risks of mortality and airflow limitation in Japanese individuals with preserved ratio impaired spirometry. Am J Respir Crit Care Med. 2022;206(5):563–572. doi:10.1164/rccm.202110-2302OC
  • Wijnant SRA, De Roos E, Kavousi M, et al. Trajectory and mortality of preserved ratio impaired spirometry: the Rotterdam Study. Eur Respir J. 2020;55(1):1901217. doi:10.1183/13993003.01217-2019
  • Wan ES, Fortis S, Regan EA, et al. Longitudinal phenotypes and mortality in preserved ratio impaired spirometry in the COPDGene study. Am J Respir Crit Care Med. 2018;198(11):1397–1405. doi:10.1164/rccm.201804-0663OC
  • Marott JL, Ingebrigtsen TS, Colak Y, Vestbo J, Lange P. Trajectory of preserved ratio impaired spirometry: natural history and long-term prognosis. Am J Respir Crit Care Med. 2021;204(8):910–920. doi:10.1164/rccm.202102-0517OC
  • Higbee DH, Granell R, Davey Smith G, Dodd JW. Prevalence, risk factors, and clinical implications of preserved ratio impaired spirometry: a UK Biobank cohort analysis. Lancet Respir Med. 2022;10(2):149–157. doi:10.1016/S2213-2600(21)00369-6
  • Xiao T, Wijnant SRA, Licher S, et al. Lung function impairment and the risk of incident dementia: the Rotterdam Study. J Alzheimers Dis. 2021;82(2):621–630. doi:10.3233/JAD-210162
  • Ariza-Prota MA, Pando-Sandoval A, García-Clemente M, et al. Primary pulmonary botryomycosis: a bacterial lung infection mimicking lung cancer [Case study]. Int J Tuberc Lung Dis. 2013;17(7):992–994. doi:10.5588/ijtld.12.0054
  • Shiraishi Y, Shimada T, Tanabe N, et al. The prevalence and physiological impacts of centrilobular and paraseptal emphysema on computed tomography in smokers with preserved ratio impaired spirometry. ERJ Open Res. 2022;8(2):00063–2022. doi:10.1183/23120541.00063-2022
  • Kim J, Lee CH, Lee HY, Kim H. Association between comorbidities and preserved ratio impaired spirometry: using the Korean national health and nutrition examination survey IV-VI. Respiration. 2022;101(1):25–33. doi:10.1159/000517599
  • Wan ES, Hokanson JE, Regan EA, et al. Significant spirometric transitions and preserved ratio impaired spirometry among ever smokers. Chest. 2022;161(3):651–661. doi:10.1016/j.chest.2021.09.021
  • Mkorombindo T, Balkissoon R. Journal club-respiratory impairment with a preserved spirometric ratio. Chronic Obstr Pulm Dis. 2022;9(1):103–110. doi:10.15326/jcopdf.2022.0285
  • Perez-Padilla R, Montes de Oca M, Thirion-Romero I, et al. Trajectories of spirometric patterns, obstructive and PRISm, in a population-based cohort in Latin America. Int J Chron Obstruct Pulmon Dis. 2023;18:1277–1285. doi:10.2147/COPD.S406208
  • Li D, Ruan Z, Xie S, Xuan S, Zhao H, Wu B. The relationship between preserved ratio impaired spirometry and mortality in the myocardial infarction survivors: a population-based cohort study. BMC Cardiovasc Disord. 2023;23(1):331. doi:10.1186/s12872-023-03352-2
  • Chen Y, Horne SL, Dosman JA. Body weight and weight gain related to pulmonary function decline in adults: a six year follow up study. Thorax. 1993;48(4):375–380. doi:10.1136/thx.48.4.375
  • Sun C, Kovacs P, Guiu-Jurado E. Genetics of obesity in East Asians. Front Genet. 2020;11:575049. doi:10.3389/fgene.2020.575049
  • Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief. 2015;219:1–8.
  • Yang JJ, Yu D, Wen W, et al. Tobacco smoking and mortality in Asia: a pooled meta-analysis. JAMA Network Open. 2019;2(3):e191474. doi:10.1001/jamanetworkopen.2019.1474
  • Reitsma MB, Fullman N, Ng M; Collaborators GBDT. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet. 2017;389(10082):1885–1906. doi:10.1016/S0140-6736(17)30819-X
  • Ratanachina J, De Matteis S, Cullinan P, Burney P. Pesticide exposure and lung function: a systematic review and meta-analysis. Occup Med. 2020;70(1):14–23. doi:10.1093/occmed/kqz161
  • van Horne YO, Farzan SF, Razafy M, Johnston JE. Respiratory and allergic health effects in children living near agriculture: a review. Sci Total Environ. 2022;832:155009. doi:10.1016/j.scitotenv.2022.155009
  • Nordgren TM, Bailey KL. Pulmonary health effects of agriculture. Curr Opin Pulm Med. 2016;22(2):144–149. doi:10.1097/MCP.0000000000000247
  • Al-Qerem W, Ling J. Pulmonary function tests in Egyptian schoolchildren in rural and urban areas. East Mediterr Health J. 2018;24(4):325–332. doi:10.26719/2018.24.4.325
  • Priftis KN, Mantzouranis EC, Anthracopoulos MB. Asthma symptoms and airway narrowing in children growing up in an urban versus rural environment. J Asthma. 2009;46(3):244–251. doi:10.1080/02770900802647516
  • Whitrow MJ, Harding S. Ethnic differences in adolescent lung function: anthropometric, socioeconomic, and psychosocial factors. Am J Respir Crit Care Med. 2008;177(11):1262–1267. doi:10.1164/rccm.200706-867OC
  • Korotzer B, Ong S, Hansen JE. Ethnic differences in pulmonary function in healthy nonsmoking Asian-Americans and European-Americans. Am J Respir Crit Care Med. 2000;161(4 Pt 1):1101–1108. doi:10.1164/ajrccm.161.4.9902063
  • Gray BA, Hyde RW, Hodges M, Yu PN. Alterations in lung volume and pulmonary function in relation to hemodynamic changes in acute myocardial infarction. Circulation. 1979;59(3):551–559. doi:10.1161/01.CIR.59.3.551
  • Kanetake R, Takamatsu K, Park K, Yokoyama A. Prevalence and risk factors for COPD in subjects with preserved ratio impaired spirometry. BMJ Open Respir Res. 2022;9(1). doi:10.1136/bmjresp-2022-001298
  • Young KA, Strand M, Ragland MF, et al. Pulmonary subtypes exhibit differential global initiative for chronic obstructive lung disease spirometry stage progression: the COPDGene(R) study. Chronic Obstr Pulm Dis. 2019;6(5):414–429. doi:10.15326/jcopdf.6.5.2019.0155
  • Young KA, Regan EA, Han MK, et al. Subtypes of COPD have unique distributions and differential risk of mortality. Chronic Obstr Pulm Dis. 2019;6(5):400–413. doi:10.15326/jcopdf.6.5.2019.0150
  • Wan ES, Balte P, Schwartz JE, et al. Association between preserved ratio impaired spirometry and clinical outcomes in US adults. J Am Med Assoc. 2021;326(22):2287–2298. doi:10.1001/jama.2021.20939
  • Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD. Morbidity and mortality associated with the restrictive spirometric pattern: a longitudinal study. Thorax. 2010;65(6):499–504. doi:10.1136/thx.2009.126052
  • Miura S, Iwamoto H, Omori K, et al. Preserved ratio impaired spirometry with or without restrictive spirometric abnormality. Sci Rep. 2023;13(1):2988. doi:10.1038/s41598-023-29922-0
  • Gold DR, Wang X, Wypij D, Speizer FE, Ware JH, Dockery DW. Effects of cigarette smoking on lung function in adolescent boys and girls. N Engl J Med. 1996;335(13):931–937. doi:10.1056/NEJM199609263351304
  • Allinson JP, Hardy R, Donaldson GC, Shaheen SO, Kuh D, Wedzicha JA. Combined impact of smoking and early-life exposures on adult lung function trajectories. Am J Respir Crit Care Med. 2017;196(8):1021–1030. doi:10.1164/rccm.201703-0506OC
  • Evans MD, Pryor WA. Cigarette smoking, emphysema, and damage to alpha 1-proteinase inhibitor. Am J Physiol. 1994;266(6 Pt 1):L593–L611. Erratum in: Am J Physiol. 1995;268(1 Pt 1):section L following table of contents. Erratum in: Am J Physiol. 1995;268(6 Pt 3). doi:10.1152/ajplung.1994.266.6.L593
  • Lugg ST, Scott A, Parekh D, Naidu B, Thickett DR. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax. 2022;77(1):94–101. doi:10.1136/thoraxjnl-2020-216296
  • Tang X, Lei J, Li W, et al. The relationship between BMI and lung function in populations with different characteristics: a cross-sectional study based on the enjoying breathing program in China. Int J Chron Obstruct Pulmon Dis. 2022;17:2677–2692. doi:10.2147/COPD.S378247
  • Mafort TT, Rufino R, Costa CH, Lopes AJ. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med. 2016;11(1):28. doi:10.1186/s40248-016-0066-z
  • Brazzale DJ, Pretto JJ, Schachter LM. Optimizing respiratory function assessments to elucidate the impact of obesity on respiratory health. Respirology. 2015;20(5):715–721. doi:10.1111/resp.12563
  • Grigsby MR, Siddharthan T, Pollard SL, et al. Low body mass index is associated with higher odds of COPD and lower lung function in low- and middle-income countries. COPD. 2019;16(1):58–65. doi:10.1080/15412555.2019.1589443
  • Zhang Q, Qiu M, Lai K, Zhong N. Cough and environmental air pollution in China. Pulm Pharmacol Ther. 2015;35:132–136. doi:10.1016/j.pupt.2015.10.003
  • Jackson P, Siddharthan T. The global significance of PRISm: how data from low- and middle-income countries link physiology to inflammation. Eur Respir J. 2020;55(4):2000184. doi:10.1183/13993003.00184-2020
  • Godfrey MS, Jankowich MD. The vital capacity is vital: epidemiology and clinical significance of the restrictive spirometry pattern. Chest. 2016;149(1):238–251. doi:10.1378/chest.15-1045
  • de Barros Mendes Lopes T, Groth EE, Veras M, et al. Pre- and postnatal exposure of mice to concentrated urban PM2.5 decreases the number of alveoli and leads to altered lung function at an early stage of life. Environ Pollut. 2018;241:511–520. doi:10.1016/j.envpol.2018.05.055
  • Hou D, Ge Y, Chen C, et al. Associations of long-term exposure to ambient fine particulate matter and nitrogen dioxide with lung function: a cross-sectional study in China. Environ Int. 2020;144:105977. doi:10.1016/j.envint.2020.105977
  • Miura S, Iwamoto H, Omori K, et al. Clinical characteristics of preserved ratio impaired spirometry in Japan. Respirology. 2021;26(Suppl 3):81–82.
  • Raherison C, Girodet PO. Epidemiology of COPD. Eur Respir Rev. 2009;18(114):213–221. doi:10.1183/09059180.00003609
  • Lopez-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology. 2016;21(1):14–23. doi:10.1111/resp.12660
  • Ritchie AI, Wedzicha JA. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin Chest Med. 2020;41(3):421–438.
  • Salvi S. Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):17–27. doi:10.1016/j.ccm.2013.09.011
  • Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557–582. doi:10.1164/rccm.201701-0218PP
  • He D, Sun Y, Gao M, et al. Different risks of mortality and longitudinal transition trajectories in new potential subtypes of the preserved ratio impaired spirometry: evidence from the English longitudinal study of aging. Front Med. 2021;8:755855. doi:10.3389/fmed.2021.755855
  • Lowe KE, Regan EA, Anzueto A, et al. COPDGene® 2019: redefining the diagnosis of chronic obstructive pulmonary disease. Chronic Obstr Pulm Dis. 2019;6(5):384–399. doi:10.15326/jcopdf.6.5.2019.0149
  • Fortis S, Corazalla EO, Jacobs DR, Kim HJ. Persistent empiric COPD diagnosis and treatment after pulmonary function test showed no obstruction. Respir Care. 2016;61(9):1192–1200. doi:10.4187/respcare.04647
  • Adibi A, Sadatsafavi M. Looking at the COPD spectrum through “PRISm”. Eur Respir J. 2020;55(1):1902217. doi:10.1183/13993003.02217-2019
  • Lu J, Ge H, Qi L, et al. Subtyping preserved ratio impaired spirometry (PRISm) by using quantitative HRCT imaging characteristics. Respir Res. 2022;23(1):309. doi:10.1186/s12931-022-02113-7
  • Serifoglu I, Ulubay G. The methods other than spirometry in the early diagnosis of COPD. Tuberk Toraks. 2019;67(1):63–70. doi:10.5578/tt.68162
  • Wei X, Ding Q, Yu N, et al. Imaging features of chronic bronchitis with preserved ratio and impaired spirometry (PRISm). Lung. 2018;196(6):649–658. doi:10.1007/s00408-018-0162-2
  • Wan ES, Hokanson JE, Murphy JR, et al. Clinical and radiographic predictors of GOLD-unclassified smokers in the COPDGene study. Am J Respir Crit Care Med. 2011;184(1):57–63. doi:10.1164/rccm.201101-0021OC
  • Kim SS, Yagihashi K, Stinson DS, et al. Visual assessment of CT findings in smokers with nonobstructed spirometric abnormalities in the COPDGene® study. Chronic Obstr Pulm Dis. 2014;1(1):88–96. doi:10.15326/jcopdf.1.1.2013.0001#sthash.L0atdpjM.dpuf
  • Fortis S, Comellas A, Kim V, et al. Low FVC/TLC in Preserved Ratio Impaired Spirometry (PRISm) is associated with features of and progression to obstructive lung disease. Sci Rep. 2020;10(1):5169. doi:10.1038/s41598-020-61932-0
  • Douillet D, Chouihed T, Bertoletti L, Roy PM. Pulmonary embolism and respiratory deterioration in chronic cardiopulmonary disease: a narrative review. Diagnostics. 2023;13(1):141. doi:10.3390/diagnostics13010141
  • Silvestre OM, Nadruz W, Querejeta Roca G, et al. Declining lung function and cardiovascular risk: the ARIC study. J Am Coll Cardiol. 2018;72(10):1109–1122. doi:10.1016/j.jacc.2018.06.049
  • Katta N, Loethen T, Lavie CJ, Alpert MA. Obesity and coronary heart disease: epidemiology, pathology, and coronary artery imaging. Curr Probl Cardiol. 2021;46(3):100655. doi:10.1016/j.cpcardiol.2020.100655
  • Shah N, Kelly AM, Cox N, Wong C, Soon K. Myocardial infarction in the “Young”: risk factors, presentation, management and prognosis. Heart Lung Circ. 2016;25(10):955–960. doi:10.1016/j.hlc.2016.04.015
  • Thomas PS, Cowen ER, Hulands G, Milledge JS. Respiratory function in the morbidly obese before and after weight loss. Thorax. 1989;44(5):382–386. doi:10.1136/thx.44.5.382
  • Talaminos Barroso A, Marquez Martin E, Roa Romero LM, Ortega Ruiz F. Factors affecting lung function: a review of the literature. Arch Bronconeumol. 2018;54(6):327–332. doi:10.1016/j.arbres.2018.01.030
  • Collins LC, Hoberty PD, Walker JF, Fletcher EC, Peiris AN. The effect of body fat distribution on pulmonary function tests. Chest. 1995;107(5):1298–1302. doi:10.1378/chest.107.5.1298
  • Lazarus R, Gore CJ, Booth M, Owen N. Effects of body composition and fat distribution on ventilatory function in adults. Am J Clin Nutr. 1998;68(1):35–41. doi:10.1093/ajcn/68.1.35
  • Ray CS, Sue DY, Bray G, Hansen JE, Wasserman K. Effects of obesity on respiratory function. Am Rev Respir Dis. 1983;128(3):501–506. doi:10.1164/arrd.1983.128.3.501
  • Carey IM, Cook DG, Strachan DP. The effects of adiposity and weight change on forced expiratory volume decline in a longitudinal study of adults. Int J Obes Relat Metab Disord. 1999;23(9):979–985. doi:10.1038/sj.ijo.0801029
  • Pankow W, Podszus T, Gutheil T, Penzel T, Peter J, Von Wichert P. Expiratory flow limitation and intrinsic positive end-expiratory pressure in obesity. J Appl Physiol. 1998;85(4):1236–1243. doi:10.1152/jappl.1998.85.4.1236
  • Mancuso P. Obesity and lung inflammation. J Appl Physiol. 2010;108(3):722–728. doi:10.1152/japplphysiol.00781.2009
  • Arismendi E, Bantula M, Perpina M, Picado C. Effects of obesity and asthma on lung function and airway dysanapsis in adults and children. J Clin Med. 2020;9(11):3762. doi:10.3390/jcm9113762
  • Gilmartin GS, Tamisier R, Curley M, Weiss JW. Ventilatory, hemodynamic, sympathetic nervous system, and vascular reactivity changes after recurrent nocturnal sustained hypoxia in humans. Am J Physiol Heart Circ Physiol. 2008;295(2):H778–H785. doi:10.1152/ajpheart.00653.2007
  • Calbet JA. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol. 2003;551(Pt 1):379–386. doi:10.1113/jphysiol.2003.045112
  • Mannino DM, McBurnie MA, Tan W, et al.; BOLD Collaborative Research Group. Restricted spirometry in the burden of lung disease study. Int J Tuberc Lung Dis. 2012;16(10):1405–1411.
  • Meghji J, Nadeau G, Davis KJ, et al. Noncommunicable lung disease in sub-Saharan Africa. A community-based cross-sectional study of Adults in Urban Malawi. Am J Respir Crit Care Med. 2016;194(1):67–76. doi:10.1164/rccm.201509-1807OC
  • Klein OL, Krishnan JA, Glick S, Smith LJ. Systematic review of the association between lung function and Type 2 diabetes mellitus. Diabet Med. 2010;27(9):977–987. doi:10.1111/j.1464-5491.2010.03073.x
  • Walter RE, Beiser A, Givelber RJ, O’Connor GT, Gottlieb DJ. Association between glycemic state and lung function: the Framingham Heart Study. Am J Respir Crit Care Med. 2003;167(6):911–916. doi:10.1164/rccm.2203022
  • Lawlor DA, Ebrahim S, Smith GD. Associations of measures of lung function with insulin resistance and Type 2 diabetes: findings from the British Women’s Heart and Health Study. Diabetologia. 2004;47(2):195–203. doi:10.1007/s00125-003-1310-6
  • Yeh F, Dixon AE, Marion S, et al. Obesity in adults is associated with reduced lung function in metabolic syndrome and diabetes: the Strong Heart Study. Diabetes Care. 2011;34(10):2306–2313. doi:10.2337/dc11-0682
  • Klein OL, Kalhan R, Williams MV, et al. Lung spirometry parameters and diffusion capacity are decreased in patients with Type 2 diabetes. Diabet Med. 2012;29(2):212–219. doi:10.1111/j.1464-5491.2011.03394.x
  • Zhu J, Zhao H, Chen D, Tse LA, Kinra S, Li Y. Genetic correlation and bidirectional causal association between Type 2 diabetes and pulmonary function. Front Endocrinol. 2021;12:777487. doi:10.3389/fendo.2021.777487
  • Hsia CC, Raskin P. Lung function changes related to diabetes mellitus. Diabetes Technol Ther. 2007;9(Suppl 1):S-73-S-82. doi:10.1089/dia.2007.0227
  • Liu L, Feng Q, Wang Y, et al. Interaction of polycyclic aromatic hydrocarbon exposure and high-fasting plasma glucose on lung function decline in coke oven workers: a cross-lagged panel analysis. Environ Toxicol Pharmacol. 2022;90:103811. doi:10.1016/j.etap.2022.103811
  • Shin J, Toyoda S, Nishitani S, et al. SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose tissue, and pancreatic cells via IRF1. Metabolism. 2022;133:155236. doi:10.1016/j.metabol.2022.155236
  • Hoffmann C, Gerber PA, Cavelti-Weder C, et al. Liver, NAFLD and COVID-19. Horm Metab Res. 2022;54(8):522–531. doi:10.1055/a-1834-9008
  • Torres RM, Souza MDS, Coelho ACC, de Mello LM, Souza-Machado C, Leroyer C. Association between Asthma and Type 2 diabetes mellitus: mechanisms and impact on asthma control-A literature review. Can Respir J. 2021;2021:8830439. doi:10.1155/2021/8830439
  • Kotlyarov S, Bulgakov A. Lipid metabolism disorders in the comorbid course of nonalcoholic fatty liver disease and chronic obstructive pulmonary disease. Cells. 2021;10(11):2978. doi:10.3390/cells10112978
  • Margretardottir OB, Thorleifsson SJ, Gudmundsson G, et al. Hypertension, systemic inflammation and body weight in relation to lung function impairment-an epidemiological study. COPD. 2009;6(4):250–255. doi:10.1080/15412550903049157
  • Enright PL, Kronmal RA, Smith VE, Gardin JM, Schenker MB, Manolio TA. Reduced vital capacity in elderly persons with hypertension, coronary heart disease, or left ventricular hypertrophy. The Cardiovascular Health Study. Chest. 1995;107(1):28–35. doi:10.1378/chest.107.1.28
  • Engström G, Hedblad B, Valind S, Janzon L. Increased incidence of myocardial infarction and stroke in hypertensive men with reduced lung function. J Hypertens. 2001;19(2):295–301. doi:10.1097/00004872-200102000-00017
  • Kannel WB, Hubert H, Lew EA. Vital capacity as a predictor of cardiovascular disease: the Framingham study. Am Heart J. 1983;105(2):311–315. doi:10.1016/0002-8703(83)90532-X
  • Wannamethee SG, Shaper AG, Ebrahim S. Respiratory function and risk of stroke. Stroke. 1995;26(11):2004–2010. doi:10.1161/01.STR.26.11.2004
  • Selby JV, Friedman GD, Quesenberry CP. Precursors of essential hypertension: pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. Am J Epidemiol. 1990;131(6):1017–1027. doi:10.1093/oxfordjournals.aje.a115593
  • Wu Y, Vollmer WM, Buist AS, et al. Relationship between lung function and blood pressure in Chinese men and women of Beijing and Guangzhou. PRC-USA Cardiovascular and Cardiopulmonary Epidemiology Research Group. Int J Epidemiol. 1998;27(1):49–56. doi:10.1093/ije/27.1.49
  • Jankowich MD, Taveira T, Wu WC. Decreased lung function is associated with increased arterial stiffness as measured by peripheral pulse pressure: data from NHANES III. Am J Hypertens. 2010;23(6):614–619. doi:10.1038/ajh.2010.37
  • Doshan HD, Rosenthal RR, Brown R, Slutsky A, Applin WJ, Caruso FS. Celiprolol, atenolol and propranolol: a comparison of pulmonary effects in asthmatic patients. J Cardiovasc Pharmacol. 1986;8(Suppl 4):S105–S108.
  • van Zyl AI, Jennings AA, Bateman ED, Opie LH. Comparison of respiratory effects of two cardioselective beta-blockers, celiprolol and atenolol, in asthmatics with mild to moderate hypertension. Chest. 1989;95(1):209–213. doi:10.1378/chest.95.1.209
  • Williams DM. Clinical pharmacology of corticosteroids. Respir Care. 2018;63(6):655–670. doi:10.4187/respcare.06314
  • Washko GR, Hunninghake GM, Fernandez IE, et al. Lung volumes and emphysema in smokers with interstitial lung abnormalities. N Engl J Med. 2011;364(10):897–906. doi:10.1056/NEJMoa1007285