170
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

RNF6 Targeted by miR-26a-5p Protects Pancreatic β-Cell Function Against Type 2 Diabetes

, , , &
Pages 93-102 | Published online: 11 Jan 2022

References

  • Godfrey JD, Morton JP, Wilczynska A, Sansom OJ, Bushell MD. MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death Dis. 2018;9(6):644. doi:10.1038/s41419-018-0628-4
  • Prasun P. Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord. 2020;19(2):2017–2022. doi:10.1007/s40200-020-00679-x
  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843
  • Liu J, Sun X, Zhang FL, et al. Clinical potential of extracellular vesicles in type 2 diabetes. Front Endocrinol (Lausanne). 2020;11:596811. doi:10.3389/fendo.2020.596811
  • Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes. 2015;6(1):87–123. doi:10.3390/genes6010087
  • Liu L, Zhang Y, Wong CC, et al. RNF6 promotes colorectal cancer by activating the Wnt/β-catenin pathway via ubiquitination of TLE3. Cancer Res. 2018;78(8):1958–1971. doi:10.1158/0008-5472.Can-17-2683
  • Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11(9):629–643. doi:10.1038/nrc3120
  • Cai J, Xiong Q, Jiang X, Zhou S, Liu T. RNF6 facilitates metastasis and radioresistance in hepatocellular carcinoma through ubiquitination of FoxA1. Exp Cell Res. 2019;374(1):152–161. doi:10.1016/j.yexcr.2018.11.019
  • Qiu Y, Zhu H, Xu D, et al. RING-finger protein 6 enhances c-Myc-mediated Warburg effect by promoting MAD1 degradation to facilitate pancreatic cancer metastasis. Am J Cancer Res. 2021;11(5):2025–2043.
  • Jin G, Wang Q, Pei X, et al. mRNAs expression profiles of high glucose-induced memory in human umbilical vein endothelial cells. Diabetes Metabol Syndr Obes. 2019;12:1249–1261. doi:10.2147/dmso.S206270
  • Lyssenko V, Laakso M. Genetic screening for the risk of type 2 diabetes: worthless or valuable? Diabetes Care. 2013;36(Suppl2):S120–6. doi:10.2337/dcS13-2009
  • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–379. doi:10.1146/annurev-biochem-060308-103103
  • Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. 2019;234(5):5451–5465. doi:10.1002/jcp.27486
  • Stępień E, Durak-Kozica M, Kamińska A, et al. Circulating ectosomes: determination of angiogenic microRNAs in type 2 diabetes. Theranostics. 2018;8(14):3874–3890. doi:10.7150/thno.23334
  • Demirsoy İH, Ertural DY, Balci Ş, et al. Profiles of circulating miRNAs following metformin treatment in patients with type 2 diabetes. J Med Biochem. 2018;37(4):499–506. doi:10.2478/jomb-2018-0009
  • Li HX, Li XH, Jiang J, Shi PX, Zhang XG, Tian M. Effect of miR-26b on gestational diabetes mellitus in rats via PI3K/Akt signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(4):1609–1615. doi:10.26355/eurrev_202002_20335
  • Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab Pharmacokinet. 2014;29(4):333–340. doi:10.2133/dmpk.dmpk-13-rg-114
  • Grimaldi A, Heurtier A. [Diagnostic criteria for type 2 diabetes]. Rev Prat. 1999;49(1):16–21. French.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • Naujok O, Bandou Y, Shikama Y, Funaki M, Lenzen S. Effect of substrate rigidity in tissue culture on the function of insulin-secreting INS-1E cells. J Tissue Eng Regen Med. 2017;11(1):58–65. doi:10.1002/term.1857
  • Kao SY, Shyu JF, Wang HS, et al. Comparisons of differentiation potential in human mesenchymal stem cells from Wharton’s jelly, bone marrow, and pancreatic tissues. Stem Cells Int. 2015;2015:306158. doi:10.1155/2015/306158
  • Armstrong D. Preface. Advanced protocols in oxidative stress III. Methods Mol Biol. 2015;1208:v–vi. doi:10.1007/978-1-4939-1441-8
  • Chakraborty C, George Priya Doss C, Bandyopadhyay S. miRNAs in insulin resistance and diabetes-associated pancreatic cancer: the ‘minute and miracle’ molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug Targets. 2013;14(10):1110–1117. doi:10.2174/13894501113149990182
  • Fiory F, Spinelli R, Raciti GA, et al. Targetting PED/PEA-15 for diabetes treatment. Expert Opin Ther Targets. 2017;21(6):571–581. doi:10.1080/14728222.2017.1317749
  • Xie T, So WY, Li XY, Leung PS. Fibroblast growth factor 21 protects against lipotoxicity-induced pancreatic β-cell dysfunction via regulation of AMPK signaling and lipid metabolism. Clin Sci. 2019;133(19):2029–2044. doi:10.1042/cs20190093
  • Himanshu D, Ali W, Wamique M. Type 2 diabetes mellitus: pathogenesis and genetic diagnosis. J Diabetes Metab Disord. 2020;19(2):1959–1966. doi:10.1007/s40200-020-00641-x
  • Fang Z, Weng C, Li H, et al. Single-cell heterogeneity analysis and CRISPR screen identify key β-cell-specific disease genes. Cell Rep. 2019;26(11):3132–3144.e7. doi:10.1016/j.celrep.2019.02.043
  • Tan J, Tong A, Xu Y. Pancreatic β-cell function is inhibited by miR-3666 in type 2 diabetes mellitus by targeting adiponectin. Braz J Med Biol Res. 2019;52(6):e8344. doi:10.1590/1414-431x20198344
  • Latreille M, Herrmanns K, Renwick N, et al. miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. J Mol Med. 2015;93(10):1159–1169. doi:10.1007/s00109-015-1296-9