247
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Decreased Levels of miR-126 and miR-132 in Plasma and Vitreous Humor of Non-Proliferative Diabetic Retinopathy Among Subjects with Type-2 Diabetes Mellitus

, , , , & ORCID Icon
Pages 345-358 | Published online: 04 Feb 2022

References

  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–136. doi:10.1016/S0140-6736(09)62124-3
  • Wong TY, Cheung CM, Larsen M, Sharma S, Simo R. Diabetic retinopathy. Nat Rev Dis Primers. 2016;2:16012. doi:10.1038/nrdp.2016.12
  • Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J MolSci. 2018;19(6):1816.
  • Nathan DM, Genuth S, Lachin J, et al.; Diabetes C, Complications Trial Research. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–986.
  • Group UKPDSU. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–853. doi:10.1016/S0140-6736(98)07019-6
  • Writing Team for the Diabetes C, Complications Trial/Epidemiology of Diabetes I, Complications Research G. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA. 2003;290(16):2159–2167. doi:10.1001/jama.290.16.2159
  • Zhang QM, Fang W, Ma L, Wang Z, Yang YM, Lu YQ. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes. Medicine. 2018;97(15):e0415. doi:10.1097/MD.0000000000010415
  • Huang H, He J, Johnson DK, et al. Deletion of placental growth factor prevents diabetic retinopathy and is associated with Akt activation and HIF1α-VEGF pathway inhibition. Diabetes. 2015;64(1):200–212.
  • Li J, Wang JJ, Yu Q, Chen K, Mahadev K, Zhang SX. Inhibition of reactive oxygen species by Lovastatin downregulates vascular endothelial growth factor expression and ameliorates blood-retinal barrier breakdown in db/db mice: role of NADPH oxidase 4. Diabetes. 2010;59(6):1528–1538. doi:10.2337/db09-1057
  • Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N EnglJ Med. 1994;331(22):1480–1487. doi:10.1056/NEJM199412013312203
  • Adamis AP, Miller JW, Bernal M-T, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 1994;118(4):445–450. doi:10.1016/S0002-9394(14)75794-0
  • Lupo G, Motta C, Giurdanella G, et al. Role of phospholipases A2 in diabetic retinopathy: in vitro and in vivo studies. BiochemPharmacol. 2013;86(11):1603–1613.
  • Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonulaoccluden 1: a potential mechanism for vascular permeability in diabetic retinopathy and tumors. J BiolChem. 1999;274(33):23463–23467.
  • Rousseau S, Houle F, Landry J, Huot J. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene. 1997;15(18):2169–2177. doi:10.1038/sj.onc.1201380
  • Patel JI, Hykin PG, Gregor ZJ, Boulton M, Cree IA. Angiopoietin concentrations in diabetic retinopathy. Br J Ophthalmol. 2005;89(4):480–483. doi:10.1136/bjo.2004.049940
  • Rangasamy S, Srinivasan R, Maestas J, McGuire PG, Das A. A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52(6):3784–3791. doi:10.1167/iovs.10-6386
  • Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW. Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes ObesMetab. 2008;10(1):53–63.
  • Martinez B, Peplow P. MicroRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen Res. 2019;14(11):1858–1869. doi:10.4103/1673-5374.259602
  • Barutta F, Bruno G, Matullo G, et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. ActaDiabetol. 2017;54(2):133–139.
  • McAuley AK, Dirani M, Wang JJ, Connell PP, Lamoureux EL, Hewitt AW. A genetic variant regulating miR-126 is associated with sight threatening diabetic retinopathy. DiabVasc Dis Res. 2015;12(2):133–138. doi:10.1177/1479164114560160
  • Lu J-M, Zhang -Z-Z, Ma X, Fang S-F, Qin X-H. Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy. Exp Eye Res. 2020;190:107886. doi:10.1016/j.exer.2019.107886
  • Wang Q, Navitskaya S, Chakravarthy H, et al. Dual anti-inflammatory and anti-angiogenic action of miR-15a in diabetic retinopathy. EBioMedicine. 2016;11:138–150. doi:10.1016/j.ebiom.2016.08.013
  • Chen S, Yuan M, Liu Y, et al. Landscape of microRNA in the aqueous humour of proliferative diabetic retinopathy as assessed by next-generation sequencing. ClinExpOphthalmol. 2019;47(7):925–936.
  • Ji H, Yi Q, Chen L, et al. Circulating miR-3197 and miR-2116-5p as novel biomarkers for diabetic retinopathy. ClinChimActa. 2019;501:147–153.
  • Blum A, Meerson A, Rohana H, et al. MicroRNA-423 may regulate diabetic vasculopathy. ClinExp Med. 2019;19(4):469–477. doi:10.1007/s10238-019-00573-8
  • Pastukh N, Meerson A, Kalish D, Jabaly H, Blum A. Serum miR-122 levels correlate with diabetic retinopathy. ClinExp Med. 2019;19(2):255–260. doi:10.1007/s10238-019-00546-x
  • Zampetaki A, Willeit P, Burr S, et al. Angiogenic microRNAs linked to incidence and progression of diabetic retinopathy in type 1 diabetes. Diabetes. 2016;65(1):216. doi:10.2337/db15-0389
  • Smit-McBride Z, Nguyen AT, Yu AK, et al. Unique molecular signatures of microRNAs in ocular fluids and plasma in diabetic retinopathy. PLoS One. 2020;15(7):e0235541. doi:10.1371/journal.pone.0235541
  • Kumari N, Karmakar A, Chakrabarti S, Ganesan SK. Integrative computational approach revealed crucial genes associated with different stages of diabetic retinopathy. Front Genet. 2020;11:576442. doi:10.3389/fgene.2020.576442
  • Grieco GE, Sebastiani G, Eandi CM, et al. MicroRNA expression in the aqueous humor of patients with diabetic macular edema. Int J MolSci. 2020;21(19):7328.
  • Desjarlais M, Rivera JC, Lahaie I, et al. MicroRNA expression profile in retina and choroid in oxygen-induced retinopathy model. PLoS One. 2019;14(6):e0218282–e. doi:10.1371/journal.pone.0218282
  • Platania CBM, Maisto R, Trotta MC, et al. Retinal and circulating miRNA expression patterns in diabetic retinopathy: an in silico and in vivo approach. Br J Pharmacol. 2019;176(13):2179–2194. doi:10.1111/bph.14665
  • Wang M, Zheng H, Zhou X, Zhang J, Shao G. miR-122 promotes diabetic retinopathy through targeting TIMP3. Animal Cells and Systems. 2020;24(5):275–281. doi:10.1080/19768354.2020.1816580
  • Yang TT, Song SJ, Xue HB, Shi DF, Liu CM, Liu H. Regulatory T cells in the pathogenesis of type 2 diabetes mellitus retinopathy by miR-155. Eur Rev Med PharmacolSci. 2015;19(11):2010–2015.
  • Prado MSG, de Jesus ML, de Goes TC, Mendonca LSO, Kaneto CM. Downregulation of circulating miR-320a and target gene prediction in patients with diabetic retinopathy. BMC Res Notes. 2020;13(1):155. doi:10.1186/s13104-020-05001-9
  • Ji Q, Han J, Wang L, et al. MicroRNA-34a promotes apoptosis of retinal vascular endothelial cells by targeting SIRT1 in rats with diabetic retinopathy. Cell Cycle. 2020;19(21):2886–2896. doi:10.1080/15384101.2020.1827509
  • Zheng Y, Liu Y, Wang L, et al. MicroRNA126 suppresses the proliferation and migration of endothelial cells in experimental diabetic retinopathy by targeting pololike kinase 4. Int J Mol Med. 2021;47(1):151–160. doi:10.3892/ijmm.2020.4775
  • Wang J, Yao Y, Wang K, Li J, Chu T, Shen H. MicroRNA-148a-3p alleviates high glucose induced diabetic retinopathy by targeting TGFB2 and FGF2. ActaDiabetol. 2020;57(12):1435–1443.
  • Yang Y, Liu Y, Li Y, et al. MicroRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy. J ClinEndocrinolMetab. 2020;105(11):3404–3415.
  • Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep. 2017;37(2):BSR20160572. doi:10.1042/BSR20160572
  • McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes. 2011;60(4):1314–1323. doi:10.2337/db10-1557
  • Zhang J, Li S, Li L, Li M, Guo C, Yao J. Exosome and exosomal MicroRNA: trafficking, sorting, and function. GenomProteomBioinf. 2015;13(1):17–24.
  • Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. NatlAcadSci U S A. 2011;108(12):5003–5008. doi:10.1073/pnas.1019055108
  • Turchinovich A, Tonevitsky AG, Burwinkel B. Extracellular miRNA: a collision of two paradigms. Trends BiochemSci. 2016;41(10):883–892. doi:10.1016/j.tibs.2016.08.004
  • Greco M, Chiefari E, Accattato F, et al. MicroRNA-1281 as a novel circulating biomarker in patients with diabetic retinopathy. Front Endocrinol (Lausanne). 2020;11:528. doi:10.3389/fendo.2020.00528
  • Yang X, Yu X, Zhou RH, Liu C. Serum miRNA-27b-3p is a biomarker of diabetic retinopathy. J BiolRegulHomeost Agents. 2020;34(4):1431–1435.
  • Liu HN, Li X, Wu N, et al. Serum microRNA-221 as a biomarker for diabetic retinopathy in patients associated with type 2 diabetes. Int J Ophthalmol. 2018;11(12):1889–1894. doi:10.18240/ijo.2018.12.02
  • Shaker OG, Abdelaleem OO, Mahmoud RH, et al. Diagnostic and prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in diabetic retinopathy. IUBMB Life. 2019;71(3):310–320.
  • Qing S, Yuan S, Yun C, et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell PhysiolBiochem. 2014;34(5):1733–1740.
  • Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signalling and vascular integrity. Dev Cell. 2008;15(2):272–284. doi:10.1016/j.devcel.2008.07.008
  • Dang LT, Lawson ND, Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arterioscler Thromb Vasc Biol. 2013;33(2):193–200. doi:10.1161/ATVBAHA.112.300142
  • Yang Y, Liu Y, Li Y, et al. MicroRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy. J Clin Endocrinol Metab. 2020;105(11):3404–3415. doi:10.1210/clinem/dgaa538
  • Rawal S, Munasinghe PE, Shindikar A, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res. 2017;113(1):90–101. doi:10.1093/cvr/cvw235
  • Qin LL, An MX, Liu YL, Xu HC, Lu ZQ. MicroRNA-126: a promising novel biomarker in peripheral blood for diabetic retinopathy. Int J Ophthalmol. 2017;10(4):530–534. doi:10.18240/ijo.2017.04.05
  • Kamel NM, Ayoub NM, Ibrahim RS, Ghalwash AA, Khalaf NA. Clinical significance of microRNA 126 in diabetic retinopathy in type 2 diabetes mellitus. JRAM. 2020;1(2):128–135.
  • Chou C-H, Shrestha S, Yang C-D, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46(D1):D296–D302.
  • Wilkinson CP, Ferris FL 3rd, Klein RE; Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–1682. doi:10.1016/S0161-6420(03)00475-5
  • Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. doi:10.1093/clinchem/18.6.499
  • Kei S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. ClinicaChimicaActa. 1978;90(1):37–43.
  • Pramanik S, Ganguly U, Khemka VK, Banerjee A. Decreased glucose-6-phosphate dehydrogenase activity along with oxidative stress affects visual contrast sensitivity in alcoholics. Alcohol. 2018;73:17–24. doi:10.1016/j.alcohol.2018.03.007
  • Gatautis VJ, Pearson KH. Separation of plasma carotenoids and quantitation of beta-carotene using HPLC. Clin Chim Acta. 1987;166(2–3):195–206. doi:10.1016/0009-8981(87)90422-0
  • Yang LH, Wang SL, Tang LL. Universal stem-loop primer method for screening and quantification of MicroRNA. PLoS One. 2015;9(12):e115293. doi:10.1371/journal.pone.0115293
  • Bergin P, Leggett A, Cardwell CR, et al. The effects of vitamin E supplementation on malondialdehyde as a biomarker of oxidative stress in haemodialysis patients: a systematic review and meta-analysis. BMC Nephrol. 2021;22(1):126. doi:10.1186/s12882-021-02328-8
  • Tschirch E, Weber B, Koehne P, et al. Vascular endothelial growth factor as marker for tissue hypoxia and transfusion need in anemic infants: a prospective clinical study. Pediatrics. 2009;123(3):784–790. doi:10.1542/peds.2007-2304
  • Mondal LK, Bhaduri G, Bhattacharya B. Biochemical scenario behind initiation of diabetic retinopathy in type 2 diabetes mellitus. Indian J Ophthalmol. 2018;66(4):535–540. doi:10.4103/ijo.IJO_1121_17
  • Pramanik S, Chowdhury S, Ganguly U, Banerjee A, Bhattacharya B, Mondal LK. Visual contrast sensitivity could be an early marker of diabetic retinopathy. Heliyon. 2020;6(10):e0533. doi:10.1016/j.heliyon.2020.e05336
  • Chen X, Yu X, Li X, et al. MiR-126 targets IL-17A to enhance proliferation and inhibit apoptosis in high-glucose-induced human retinal endothelial cells. Int J Biochem Cell Biol. 2019;98(2):277–283. doi:10.1139/bcb-2019-0174
  • Fang S, Ma X, Guo S, Lu J. MicroRNA-126 inhibits cell viability and invasion in a diabetic retinopathy model via targeting IRS-1. Oncol Lett. 2017;14(4):4311–4318. doi:10.3892/ol.2017.6695
  • Yang W-Z, Yang J, Xue L-P, Xiao L-B, Li Y. MiR-126 overexpression inhibits high glucose-induced migration and tube formation of rhesus macaque choroid-retinal endothelial cells by obstructing VEGFA and PIK3R2. J Diabetes Complicat. 2017;31(4):653–663. doi:10.1016/j.jdiacomp.2016.12.004
  • Ye P, Liu J, He F, Xu W, Yao K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci. 2013;11(1):17–23. doi:10.7150/ijms.7329
  • Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao J. MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Med. 2011;91(1):471–477.
  • Silva Rodrigues DV, Silva Monteiro VV, Navegantes-Lima KC, et al. MicroRNAs in cell cycle progression and proliferation: molecular mechanisms and pathways. Non-Coding RNA Investing. 2018;2:28. doi:10.21037/ncri.2018.04.06
  • Beltramo E, Porta M. Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem. 2013;20(26):3218–3225. doi:10.2174/09298673113209990022
  • Lazzara F, Trotta MC, Platania CBM, et al. Stabilization of HIF-1α in human retinal endothelial cells modulates expression of miRNAs and proangiogenic growth factors. Front Pharmacol. 2020;11:1063. doi:10.3389/fphar.2020.01063
  • Nallamshetty S, Chan SY, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity. Free RadicBiol Med. 2013;64:20–30. doi:10.1016/j.freeradbiomed.2013.05.022