377
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Potential Molecular Mechanism of Yishen Capsule in the Treatment of Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking

, , , , , , , & show all
Pages 943-962 | Published online: 29 Mar 2022

References

  • Sever B, Altntop MD, Demir Y, et al. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. J Mol Struct. 2020;1224(2013):129446. doi:10.1016/j.molstruc.2020.129446
  • Sever B, Altintop MD, Demir Y, et al. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg Chem. 2020;102:104110. doi:10.1016/j.bioorg.2020.104110
  • Sever B, Altıntop MD, Demir Y, et al. Identification of a new class of potent aldose reductase inhibitors: design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem Biol Interact. 2021;345:109576. doi:10.1016/j.cbi.2021.109576
  • Li KX, Ji MJ, Sun HJ. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene. 2021;780:145532. doi:10.1016/j.gene.2021.145532
  • Chuang SM, Shih HM, Chien MN, et al. Risk factors in metabolic syndrome predict the progression of diabetic nephropathy in patients with type 2 diabetes. Diabetes Res Clin Pract. 2019;153:6–13. doi:10.1016/j.diabres.2019.04.022
  • Andrade LS, Jornayvaz FR, De Seigneux S. Chronic kidney disease and new antidiabetic drugs: an overview in 2019. Rev Med Suisse. 2019;15(653):1106–1111.
  • Chinese Association of Chinese Medicine. [Guidelines for the prevention and treatment of diabetic nephropathy with traditional Chinese medicine]. Chin Med Mod Distance Educ China. 2011;9(4):151–153. Chinese.
  • Fang J, Deng A, Liu J. A clinical study of Yishe capsule in treating early diabetic nephropathy. Chin J Integr Trad West Nephrol. 2005;2005(08):457–459.
  • Liu YX, Liu WY, Zhang ZY, et al. Yishen capsule promotes podocyte autophagy through regulating SIRT1/NF-κB signaling pathway to improve diabetic nephropathy. Ren Fail. 2021;43(1):128–140. doi:10.1080/0886022X.2020.1869043
  • Zhang XD, Fang JA, Sun YY, et al. Effect of yishen capsule on podocin in renal tissue of rats with diabetic nephropathy. Chin J Integr Trad West Nephrol. 2011;12(03):199–201.
  • Liu YX, Hu YL, Shi QW, et al. Effect of Yishen capsule on the expression of SOCS3, p-JAK2 and p-STAT3 in mouse podocyte of high glucose. Chin J Integr Trad West Nephrol. 2019;20(10):854–858.
  • Dong HT, Fang JA, Zhang XD, et al. Effects of Yishen capsule on the expression of SOCS-3 and TGF-β1 in renal tubular epithelial cells under high glucose condition. Chin J Integr Trad West Nephrol. 2016;17(04):327–329.
  • Chai B, Fang JA, Sun YY, et al. The effect of Yishen capsule on SOCS-3, collagen type I and IV in diabetic nephropathy rats. Chin J Integr Trad West Nephrol. 2013;14(07):573–575.
  • Zhang XD, Fang JA, Li XX, et al. Effect of Yishen capsule on tubulointerstitial expression of TLR4 and NF-κB in experimental diabetic nephropathy. Chin J Integr Trad West Nephrol. 2013;2(04):192–196.
  • Wang RH, Fang JA, Yang SY. Effect of Yishen Capsule on expression of vascular endothelial growth factor in renal tissue of diabetic nephropathy rats. Chin J Integr Trad West Nephrol. 2010;8(07):832–833.
  • Hookins AL. Network pharmacology. Nat Biotechnol. 2007;25(10):1110–1111. doi:10.1038/nbt1007-1110
  • Liang G, Zhang L, Jiang G, et al. Effects and components of herb pair Huanglian-Banxia on diabetic gastroparesis by network pharmacology. Biomed Res Int. 2021;2021:8257937. doi:10.1155/2021/8257937
  • Luo Y, Li D, Liao Y, et al. Systems pharmacology approach to investigate the mechanism of Kai-Xin-San in Alzheimer’s disease. Front Pharmacol. 2020;11:381. doi:10.3389/fphar.2020.00381
  • Chen YY. Systems-pharmacology investigation of the mechanisms of traditional Chinese medicine Rhodiola rosea L. for the remission of fatigue. Doctoral dissertation. Northwest Sci-Tech University of Agriculture and Forestry; 2018.
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Demir Y, Kotan MŞ, Dikbaş N, et al. Phytase from Weissella halotolerans: purification, partial characterisation and the effect of some metals. Int J Food Properties. 2017;1–11. doi:10.1080/10942912.2017.1368547
  • Demir Y, Duran HE, Durmaz L, et al. The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: a perspective for metabolic disorders. Appl Biochem Biotechnol. 2020;190(2):437–447. doi:10.1007/s12010-019-03099-7
  • Demir Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. J Pharm Pharmacol. 2019;71(10):1576–1583. doi:10.1111/jphp.13144
  • Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018. Am J Kidney Dis. 2018;71(6):884–895. doi:10.1053/j.ajkd.2017.10.026
  • Sever B, Altıntop M, Demir Y, et al. A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chem. 2021;19(1):347–357. doi:10.1515/chem-2021-0032
  • Demir Y, Ozaslan MS, Duran HE, et al. Inhibition effects of quinones on aldose reductase: antidiabetic properties. Environ Toxicol Pharmacol. 2019;70:103195. doi:10.1016/j.etap.2019.103195
  • Lei D, Chengcheng L, Xuan Q, et al. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacol Res. 2019;146:104320. doi:10.1016/j.phrs.2019.104320
  • Alshehri AS. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch Physiol Biochem. 2021;1–14. doi:10.1080/13813455.2021.1890129
  • Zhu QQ, Yang XY, Zhang XJ, et al. EGCG targeting Notch to attenuate renal fibrosis via inhibition of TGFbeta/Smad3 signaling pathway activation in streptozotocin-induced diabetic mice. Food Funct. 2020;11(11):9686–9695. doi:10.1039/D0FO01542C
  • Wang H, Zhuang Z, Huang YY, et al. Protective effect and possible mechanisms of astragaloside IV in animal models of diabetic nephropathy: a preclinical systematic review and meta-analysis. Front Pharmacol. 2020;11:988. doi:10.3389/fphar.2020.00988
  • Xing L, Fang J, Zhu B, et al. Astragaloside IV protects against podocyte apoptosis by inhibiting oxidative stress via activating PPARgamma-Klotho-FoxO1 axis in diabetic nephropathy. Life Sci. 2021;269:119068. doi:10.1016/j.lfs.2021.119068
  • Zhang M, He L, Liu J, et al. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Exp Clin Endocrinol Diabetes. 2020;129:729–739. doi:10.1055/a-0998-7985
  • Nicholson SE, De Souza D, Fabri LJ, et al. Suppressor of cytokine signaling-3 preferentially binds to the SHP-2-binding site on the shared cytokine receptor subunit gp130. Proc Natl Acad Sci U S A. 2000;97(12):6493–6498. doi:10.1073/pnas.100135197
  • Pace J, Paladugu P, Das B, et al. Targeting STAT3 signaling in kidney disease. Am J Physiol Renal Physiol. 2019;316(6):F1151–F1161. doi:10.1152/ajprenal.00034.2019
  • Zbytek B, Peacock DL, Seagroves TN, et al. Putative role of HIF transcriptional activity in melanocytes and melanoma biology. Dermatoendocrinol. 2013;5(2):239–251. doi:10.4161/derm.22678
  • Takiyama Y, Harumi T, Watanabe J, et al. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism. Diabetes. 2011;60(3):981–992. doi:10.2337/db10-0655
  • Ortega A, Fernandez A, Arenas MI, et al. Outcome of acute renal injury in diabetic mice with experimental endotoxemia: role of hypoxia-inducible factor-1 alpha. J Diabetes Res. 2013;2013:254529. doi:10.1155/2013/254529
  • Laemmle A, Lechleiter A, Roh V, et al. Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1alpha protein under hypoxic conditions. PLoS One. 2012;7(3):e33433. doi:10.1371/journal.pone.0033433
  • Nayak BK, Shanmugasundaram K, Friedrichs WE, et al. HIF-1 mediates renal fibrosis in OVE26 type 1 diabetic mice. Diabetes. 2016;65(5):1387–1397. doi:10.2337/db15-0519
  • Hu J, Wang W, Zhang F, et al. Hypoxia inducible factor-1alpha mediates the profibrotic effect of albumin in renal tubular cells. Sci Rep. 2017;7(1):15878. doi:10.1038/s41598-017-15972-8
  • Baumann B, Hayashida T, Liang X, et al. Hypoxia-inducible factor-1alpha promotes glomerulosclerosis and regulates COL1A2 expression through interactions with Smad3. Kidney Int. 2016;90(4):797–808. doi:10.1016/j.kint.2016.05.026
  • Pang X, Zhang Y, Shi X, et al. Hirudin reduces the expression of markers of the extracellular matrix in renal tubular epithelial cells in a rat model of diabetic kidney disease through the hypoxia-inducible factor-1alpha (HIF-1alpha)/Vascular Endothelial Growth Factor (VEGF) signaling pathway. Med Sci Monit. 2020;26:e921894. doi:10.12659/MSM.921894
  • Garcia-Pastor C, Benito-Martinez S, Moreno-Manzano V, et al. Mechanism and consequences of the impaired Hif-1alpha response to hypoxia in human proximal tubular HK-2 cells exposed to high glucose. Sci Rep. 2019;9(1):15868. doi:10.1038/s41598-019-52310-6
  • Lv B, Hua T, Li F, et al. Hypoxia-inducible factor 1 alpha protects mesenchymal stem cells against oxygen-glucose deprivation-induced injury via autophagy induction and PI3K/AKT/mTOR signaling pathway. Am J Transl Res. 2017;9(5):2492–2499.
  • Xie Y, Jiang D, Xiao J, et al. Ischemic preconditioning attenuates ischemia/reperfusion-induced kidney injury by activating autophagy via the SGK1 signaling pathway. Cell Death Dis. 2018;9(3):338. doi:10.1038/s41419-018-0358-7
  • Jiang N, Zhao H, Han Y, et al. HIF-1alpha ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics. Cell Prolif. 2020;53(11):e12909. doi:10.1111/cpr.12909
  • Ndibalema AR, Kabuye D, Wen S, et al. Empagliflozin protects against proximal renal tubular cell injury induced by high glucose via regulation of hypoxia-inducible factor 1-alpha. Diabetes Metab Syndr Obes. 2020;13:1953–1967. doi:10.2147/DMSO.S243170
  • Schonenberger MJ, Kovacs WJ. Hypoxia signaling pathways: modulators of oxygen-related organelles. Front Cell Dev Biol. 2015;3:42. doi:10.3389/fcell.2015.00042
  • Yeh CH, Hsu SP, Yang CC, et al. Hypoxic preconditioning reinforces HIF-alpha-dependent HSP70 signaling to reduce ischemic renal failure-induced renal tubular apoptosis and autophagy. Life Sci. 2010;86(3–4):115–123. doi:10.1016/j.lfs.2009.11.022
  • Han B, Cui H, Kang L, et al. Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumour Biol. 2015;36(8):6295–6304. doi:10.1007/s13277-015-3315-4
  • Walter KM, Schonenberger MJ, Trotzmuller M, et al. Hif-2alpha promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab. 2014;20(5):882–897. doi:10.1016/j.cmet.2014.09.017
  • Istrefi Q, Türkeş C, Arslan M, et al. Sulfonamides incorporating ketene N,S-acetal bioisosteres as potent carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim). 2020;353(6):e1900383. doi:10.1002/ardp.201900383
  • Türkeş C, Demir Y, Beydemir Ş. Calcium channel blockers: molecular docking and inhibition studies on carbonic anhydrase I and II isoenzymes. J Biomol Struct Dyn. 2021;39(5):1672–1680. doi:10.1080/07391102.2020.1736631
  • Demir Y. Naphthoquinones, benzoquinones, and anthraquinones: molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev Res. 2020;81(5):628–636. doi:10.1002/ddr.21667
  • Demir Y, Taslimi P, Koçyiğit ÜM, et al. Determination of the inhibition profiles of pyrazolyl-thiazole derivatives against aldose reductase and α-glycosidase and molecular docking studies. Arch Pharm. 2020;353(12):e2000118. doi:10.1002/ardp.202000118
  • Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One. 2013;8(12):e83922. doi:10.1371/journal.pone.0083922