204
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Adipose Dysfunction in Adulthood Insulin Resistance of Low-Birth Weight Mice: A Proteomics Study

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 849-862 | Published online: 16 Mar 2022

References

  • Ma H, Sales VM, Wolf AR, et al. Attenuated effects of bile acids on glucose metabolism and insulin sensitivity in a male mouse model of prenatal undernutrition. Endocrinology. 2017;158(8):2441–2452. doi:10.1210/en.2017-00288
  • Whincup PH, Kaye SJ, Owen CG, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300(24):2886–2897.
  • Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P. Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovasc Diabetol. 2016;15:73. doi:10.1186/s12933-016-0389-2
  • Buhl CS, Stφdkilde-Jφrgensen H, Videbech P, et al. Escitalopram ameliorates hypercortisolemia and insulin resistance in low birth weight men with limbic brain alterations. J Clin Endocrinol Metab. 2018;103(1):115–124. doi:10.1210/jc.2017-01438
  • Zhao H, Song A, Zhang Y, Zhen Y, Song G, Ma H. The association between birth weight and the risk of type 2 diabetes mellitus: a systematic review an d meta-analysis. Endocr J. 2018;65(9):923–933. doi:10.1507/endocrj.EJ18-0072
  • Fontaine MA, Diane A, Singh VP, et al. Low birth weight causes insulin resistance and aberrant intestinal lipid metabolism independent of mi crobiota abundance in landrace-large white pigs. FASEB J. 2019;33(8):9250–9262. doi:10.1096/fj.201801302RR
  • Sarr O, Thompson JA, Zhao L, Lee TY, Regnault TR. Low birth weight male Guinea pig offspring display increased visceral adiposity in early adulthood. PLoS One. 2014;9(6):e98433. doi:10.1371/journal.pone.0098433
  • Beauchamp B, Ghosh S, Dysart MW, et al. Low birth weight is associated with adiposity, impaired skeletal muscle energetics and weight loss resistance in mice. Int J Obes (Lond). 2015;39(4):702–711.
  • Hughes AE, Hattersley AT, Flanagan SE, Freathy RM. Two decades since the fetal insulin hypothesis: what have we learned from genetics? Diabetologia. 2021;64(4):717–726. doi:10.1007/s00125-021-05386-7
  • Bar J, Weiner E, Levy M, Gilboa Y. The thrifty phenotype hypothesis: the association between ultrasound and Doppler studies in fetal growth restriction and the development of adult disease. Am J Obstet Gynecol MFM. 2021;3:100473. doi:10.1016/j.ajogmf.2021.100473
  • Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother. 2021;137:111315. doi:10.1016/j.biopha.2021.111315
  • Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev. 2018;98(4):1911–1941. doi:10.1152/physrev.00034.2017
  • Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des. 2008;14(12):1225–1230. doi:10.2174/138161208784246153
  • Nakano Y. Adult-onset diseases in low birth weight infants: association with adipose tissue maldevelopment. J Atheroscler Thromb. 2020;27(5):397–405. doi:10.5551/jat.RV17039
  • Wu Y, Yu X, Li Y, et al. Adipose tissue mediates associations of birth weight with glucose metabolism disorders in children. Obesity. 2019;27(5):746–755. doi:10.1002/oby.22421
  • Maréchal L, Laviolette M, Rodrigue-Way A, et al. The CD36-PPARγ pathway in metabolic disorders. Int J Mol Sci. 2018;19(5):1529. doi:10.3390/ijms19051529
  • Noshiro M, Kawamoto T, Nakashima A, et al. DEC1 regulates the rhythmic expression of PPARγ target genes involved in lipid metabolism in white ad ipose tissue. Genes Cells. 2020;25(4):232–241. doi:10.1111/gtc.12752
  • Ricote M, Valledor AF, Glass CK. Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid hom eostasis, inflammation, and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(2):230–239. doi:10.1161/01.ATV.0000103951.67680.B1
  • Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18(12):809–823. doi:10.1038/s41569-021-00569-6
  • Yamaguchi S, Yoshino J. Adipose tissue NAD+ biology in obesity and insulin resistance: from mechanism to therapy. Bioessays. 2017;39(5):1600227. doi:10.1002/bies.201600227
  • Kubota N, Terauchi Y, Miki H, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999;4(4):597–609. doi:10.1016/S1097-2765(00)80210-5
  • Glatz JF, Luiken JJ. From fat to FAT (CD36/SR-B2): understanding the regulation of cellular fatty acid uptake. Biochimie. 2017;136:21–26. doi:10.1016/j.biochi.2016.12.007
  • Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93(2):229–240. doi:10.1016/S0092-8674(00)81574-3
  • Su T, Huang C, Yang C, et al. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity. Pharmacol Res. 2020;152:104586. doi:10.1016/j.phrs.2019.104586
  • Shi P, Meng R, Liao K, et al. Cadmium transcriptionally regulates Scd1 expression in silver pomfret. Environ Toxicol. 2020;35(3):404–413. doi:10.1002/tox.22877
  • Beale EG, Forest C, Hammer RE. Regulation of cytosolic phosphoenolpyruvate carboxykinase gene expression in adipocytes. Biochimie. 2003;85(12):1207–1211. doi:10.1016/j.biochi.2003.10.012
  • Kamal S, Saleem A, Rehman S, Bibi I, Iqbal HMN. Protein engineering: regulatory perspectives of stearoyl CoA desaturase. Int J Biol Macromol. 2018;114:692–699. doi:10.1016/j.ijbiomac.2018.03.171
  • Yu S, Meng S, Xiang M, Ma H. Phosphoenolpyruvate carboxykinase in cell metabolism: roles and mechanisms beyond gluconeogenesis. Mol Metab. 2021;53:101257. doi:10.1016/j.molmet.2021.101257
  • Isganaitis E, Jimenez-Chillaron J, Woo M, et al. Accelerated postnatal growth increases lipogenic gene expression and adipocyte size in low-birth weight mice. Diabetes. 2009;58(5):1192–1200. doi:10.2337/db08-1266
  • Gondret F, Père MC, Tacher S, et al. Spontaneous intra-uterine growth restriction modulates the endocrine status and the developmental expression of genes in porcine fetal and neonatal adipose tissue. Gen Comp Endocrinol. 2013;194:208–216. doi:10.1016/j.ygcen.2013.09.018
  • Suzuki M, Shibanuma M, Kimura S. Effect of severe maternal dietary restriction on growth and intra-abdominal adipose tissue weights in offspring rats. J Nutr Sci Vitaminol. 2010;56(5):293–298. doi:10.3177/jnsv.56.293
  • Muhlhausler BS, Ritorto V, Schultz C, Chatterton BE, Duffield JA, McMillen IC. Birth weight and gender determine expression of adipogenic, lipogenic and adipokine genes in perirenal adipose tissue in the young adult sheep. Domest Anim Endocrinol. 2008;35(1):46–57. doi:10.1016/j.domaniend.2008.01.007
  • Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Adv Exp Med Biol. 2017;960:161–196. doi:10.1007/978-3-319-48382-5_7
  • Khalid M, Alkaabi J, Khan MAB, Adem A. Insulin signal transduction perturbations in insulin resistance. Int J Mol Sci. 2021;22(16):8590. doi:10.3390/ijms22168590
  • da Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol Rep. 2020;8(19):e14607. doi:10.14814/phy2.14607
  • Perez-Riverol Y, Csordas A, Bai J, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47(D1):D442–d450. doi:10.1093/nar/gky1106