218
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Eight Differential miRNAs in DN Identified by Microarray Analysis as Novel Biomarkers

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 907-920 | Published online: 24 Mar 2022

References

  • Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi:10.1016/j.diabres.2018.02.023
  • Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol. 2013;9(12):713–723. doi:10.1038/nrendo.2013.184
  • Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol. 2016;791:8–24. doi:10.1016/j.ejphar.2016.08.022
  • Waijer SW, Sen T, Arnott C, et al. Association between tnf receptors and Kim-1 with kidney outcomes in early-stage diabetic kidney disease. Clin J Am Soc Nephrol. 2022;17(2):251–259. doi:10.2215/CJN.08780621
  • Ruggenenti P, Cravedi P, Remuzzi G. The raas in the pathogenesis and treatment of diabetic nephropathy. Nat Rev Nephrol. 2010;6(6):319–330. doi:10.1038/nrneph.2010.58
  • Cheng Y, Wang D, Wang F, et al. Endogenous mir-204 protects the kidney against chronic injury in hypertension and diabetes. J Am Soc Nephrol. 2020;31(7):1539–1554. doi:10.1681/ASN.2019101100
  • Bhat SA, Ahmad SM, Mumtaz PT, et al. Long non-coding RNAs: mechanism of action and functional utility. Noncoding RNA Res. 2016;1(1):43–50. doi:10.1016/j.ncrna.2016.11.002
  • Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B. Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol. 2018;233(8):5574–5588. doi:10.1002/jcp.26514
  • Gholaminejad A, Abdul Tehrani H, Gholami Fesharaki M. Identification of candidate microRNA biomarkers in diabetic nephropathy: a meta-analysis of profiling studies. J Nephrol. 2018;31(6):813–831. doi:10.1007/s40620-018-0511-5
  • Dewanjee S, Bhattacharjee N. microRNA: a new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol. 2018;155:32–47. doi:10.1016/j.bcp.2018.06.017
  • Conserva F, Barozzino M, Pesce F, et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of kidney fibrosis in diabetic nephropathy. Sci Rep. 2019;9(1):11357. doi:10.1038/s41598-019-47778-1
  • Grayson PC, Eddy S, Taroni JN, et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann Rheum Dis. 2018;77(8):1226–1233. doi:10.1136/annrheumdis-2017-212935
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI geo: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(Database issue):D991–D995. doi:10.1093/nar/gks1193
  • McDermaid A, Monier B, Zhao J, Liu B, Ma Q. Interpretation of differential gene expression results of RNA-seq data: review and integration. Brief Bioinform. 2019;20(6):2044–2054. doi:10.1093/bib/bby067
  • Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol. 2011;696:291–303.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-delta delta C(T)) method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • Lauber C, Correia N, Trumpp A, et al. Survival differences and associated molecular signatures of dnmt3a-mutant acute myeloid leukemia patients. Sci Rep. 2020;10(1):12761. doi:10.1038/s41598-020-69691-8
  • Guan H, Peng R, Fang F, et al. Tumor-associated macrophages promote prostate cancer progression via exosome-mediated mir-95 transfer. J Cell Physiol. 2020;235(12):9729–9742. doi:10.1002/jcp.29784
  • Geng Y, Zhao S, Jia Y, et al. Mir‑95 promotes osteosarcoma growth by targeting scnn1a. Oncol Rep. 2020;43(5):1429–1436. doi:10.3892/or.2020.7514
  • Zhu H, Tang JH, Zhang SM, et al. Long noncoding RNA linc00963 promotes cdc5l-mediated malignant progression in gastric cancer. Onco Targets Ther. 2020;13:12999–13013. doi:10.2147/OTT.S274708
  • Li J, Huang S, Zhang Y, Zhuo W, Tong B, Cai F. Linc00460 enhances bladder carcinoma cell proliferation and migration by modulating mir-612/foxk1 axis. Pharmacology. 2020;105:1–12. doi:10.1159/000505216
  • Yu A, Zhao L, Kang Q, Li J, Chen K, Fu H. Transcription factor hif1α promotes proliferation, migration, and invasion of cholangiocarcinoma via long noncoding RNA h19/microRNA-612/bcl-2 axis. Transl Res. 2020;224:26–39. doi:10.1016/j.trsl.2020.05.010
  • Liu Y, Lu LL, Wen D, et al. Correction to: mir-612 regulates invadopodia of hepatocellular carcinoma by hadha-mediated lipid reprogramming. J Hematol Oncol. 2020;13(1):44. doi:10.1186/s13045-020-00875-5
  • Lin Y, Liu S, Su L, et al. Mir-570 inhibits proliferation, angiogenesis, and immune escape of hepatocellular carcinoma. Cancer Biother Radiopharm. 2018;33(6):252–257. doi:10.1089/cbr.2017.2389
  • Zhao H, Liu F, Jia R, et al. Mir-570 inhibits cell proliferation and glucose metabolism by targeting irs1 and irs2 in human chronic myelogenous leukemia. Iran J Basic Med Sci. 2017;20(5):481–488. doi:10.22038/IJBMS.2017.8671
  • Ren F, Shrestha C, Shi H, et al. Targeting of kdm5a by mir-421 in human ovarian cancer suppresses the progression of ovarian cancer cells. Onco Targets Ther. 2020;13:9419–9428. doi:10.2147/OTT.S266211
  • Huang B, Feng Z, Zhu L, et al. Silencing of microRNA-503 in rat mesenchymal stem cells exerts potent antitumorigenic effects in lung cancer cells. Onco Targets Ther. 2021;14:67–81. doi:10.2147/OTT.S282322
  • Cao X, Fan QL. Lncrna mir503hg promotes high-glucose-induced proximal tubular cell apoptosis by targeting mir-503-5p/bcl-2 pathway. Diabetes Metab Syndr Obes. 2020;13:4507–4517. doi:10.2147/DMSO.S277869
  • Perico L, Conti S, Benigni A, Remuzzi G. Podocyte-actin dynamics in health and disease. Nat Rev Nephrol. 2016;12(11):692–710. doi:10.1038/nrneph.2016.127
  • Wolf G, Chen S, Ziyadeh FN. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes. 2005;54(6):1626–1634. doi:10.2337/diabetes.54.6.1626
  • Wang X, Lin B, Nie L, Li P. microRNA-20b contributes to high glucose-induced podocyte apoptosis by targeting sirt7. Mol Med Rep. 2017;16(4):5667–5674. doi:10.3892/mmr.2017.7224
  • Zhong X, Chung AC, Chen HY, Meng XM, Lan HY. Smad3-mediated upregulation of mir-21 promotes renal fibrosis. J Am Soc Nephrol. 2011;22(9):1668–1681. doi:10.1681/ASN.2010111168
  • Loboda A, Sobczak M, Jozkowicz A, Dulak J. Tgf-beta1/smads and mir-21 in renal fibrosis and inflammation. Mediators Inflamm. 2016;2016:8319283. doi:10.1155/2016/8319283
  • Chen X, Zhao L, Xing Y, Lin B. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of timp3 expression. Biomed Pharmacother. 2018;108:7–14. doi:10.1016/j.biopha.2018.09.007
  • Sakuma H, Hagiwara S, Kantharidis P, Gohda T, Suzuki Y. Potential targeting of renal fibrosis in diabetic kidney disease using microRNAs. Front Pharmacol. 2020;11:587689. doi:10.3389/fphar.2020.587689
  • McClelland AD, Herman-Edelstein M, Komers R, et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci. 2015;129(12):1237–1249. doi:10.1042/CS20150427
  • Zhao B, Li H, Liu J, et al. microRNA-23b targets ras GTPase-activating protein sh3 domain-binding protein 2 to alleviate fibrosis and albuminuria in diabetic nephropathy. J Am Soc Nephrol. 2016;27(9):2597–2608. doi:10.1681/ASN.2015030300
  • Zhou Z, Wan J, Hou X, Geng J, Li X, Bai X. microRNA-27a promotes podocyte injury via ppargamma-mediated beta-catenin activation in diabetic nephropathy. Cell Death Dis. 2017;8(3):e2658. doi:10.1038/cddis.2017.74
  • Qin W, Chung AC, Huang XR, et al. Tgf-beta/smad3 signaling promotes renal fibrosis by inhibiting mir-29. J Am Soc Nephrol. 2011;22(8):1462–1474. doi:10.1681/ASN.2010121308
  • Lin CL, Lee PH, Hsu YC, et al. microRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol. 2014;25(8):1698–1709. doi:10.1681/ASN.2013050527
  • Xiao J, Meng XM, Huang XR, et al. Mir-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 2012;20(6):1251–1260. doi:10.1038/mt.2012.36
  • Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-beta1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011;80(4):358–368. doi:10.1038/ki.2011.43
  • Yao T, Zha D, Gao P, Shui H, Wu X. Mir-874 alleviates renal injury and inflammatory response in diabetic nephropathy through targeting toll-like receptor-4. J Cell Physiol. 2018;234(1):871–879. doi:10.1002/jcp.26908
  • Zheng Z, Guan M, Jia Y, et al. The coordinated roles of miR-26a and miR-30c in regulating TGFβ1-induced epithelial-to-mesenchymal transition in diabetic nephropathy. Sci Rep. 2016;6:37492. doi:10.1038/srep37492
  • Huang Y, Tong J, He F, et al. Mir-141 regulates tgf-beta1-induced epithelial-mesenchymal transition through repression of hipk2 expression in renal tubular epithelial cells. Int J Mol Med. 2015;35(2):311–318. doi:10.3892/ijmm.2014.2008
  • Zhang Q, Sun W, Han J, et al. The circular RNA hsa_circ_0007623 acts as a sponge of microRNA-297 and promotes cardiac repair. Biochem Biophys Res Commun. 2020;523(4):993–1000. doi:10.1016/j.bbrc.2019.12.116
  • Xi X, Yao Y, Liu N, Li P. Mir-297 alleviates lps-induced a549 cell and mice lung injury via targeting cyclin dependent kinase 8. Int Immunopharmacol. 2020;80:106197. doi:10.1016/j.intimp.2020.106197
  • Zhang CZ. Long intergenic non-coding RNA 668 regulates vegfa signaling through inhibition of mir-297 in oral squamous cell carcinoma. Biochem Biophys Res Commun. 2017;489(4):404–412. doi:10.1016/j.bbrc.2017.05.155
  • Xu K, Liang X, Shen K, et al. Mir-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochem J. 2012;446(2):291–300. doi:10.1042/BJ20120386
  • Ramírez-Salazar EG, Almeraya EV, López-Perez TV, Patiño N, Salmeron J, Velázquez-Cruz R. microRNA-548-3p overexpression inhibits proliferation, migration and invasion in osteoblast-like cells by targeting stat1 and mafb. J Biochem. 2020;168(3):203–211. doi:10.1093/jb/mvaa033
  • Cheong JY, Shin HD, Cho SW, Kim YJ. Association of polymorphism in microRNA 604 with susceptibility to persistent hepatitis b virus infection and development of hepatocellular carcinoma. J Korean Med Sci. 2014;29(11):1523–1527. doi:10.3346/jkms.2014.29.11.1523
  • Wang X, He H, Rui W, Xie X, Wang D, Zhu Y. Long non-coding RNA bcar4 binds to mir-644a and targets tlx1 to promote the progression of bladder cancer. Onco Targets Ther. 2020;13:2483–2490. doi:10.2147/OTT.S232965
  • Liang W, Liao Y, Li Z, et al. microRNA-644a promotes apoptosis of hepatocellular carcinoma cells by downregulating the expression of heat shock factor 1. Cell Commun Signal. 2018;16(1):30. doi:10.1186/s12964-018-0244-z
  • Sahin Y, Altan Z, Arman K, Bozgeyik E, Koruk Ozer M, Arslan A. Inhibition of mir-664a interferes with the migration of osteosarcoma cells via modulation of meg3. Biochem Biophys Res Commun. 2017;490(3):1100–1105. doi:10.1016/j.bbrc.2017.06.174
  • Li Y, Yan X, Ren L, Li Y. Mir-644a inhibits cellular proliferation and invasion via suppression of ctbp1 in gastric cancer cells. Oncol Res. 2018;26(1):1–8. doi:10.3727/096504016X14772410356982
  • Zhang JX, Chen ZH, Xu Y, et al. Downregulation of microRNA-644a promotes esophageal squamous cell carcinoma aggressiveness and stem cell-like phenotype via dysregulation of pitx2. Clin Cancer Res. 2017;23(1):298–310. doi:10.1158/1078-0432.CCR-16-0414
  • Wan D, Qu Y, Zhang L, Ai S, Cheng L. The lncrna linc00691 functions as a cerna for miRNA-1256 to suppress osteosarcoma by regulating the expression of st5. Onco Targets Ther. 2020;13:13171–13181. doi:10.2147/OTT.S266435
  • Wu C, Ma L, Wei H, Nie F, Ning J, Jiang T. Mir-1256 inhibits cell proliferation and cell cycle progression in papillary thyroid cancer by targeting 5-hydroxy tryptamine receptor 3a. Hum Cell. 2020;33(3):630–640. doi:10.1007/s13577-020-00325-x
  • Cai J, Chen Z, Wang J, et al. Circhectd1 facilitates glutaminolysis to promote gastric cancer progression by targeting mir-1256 and activating β-catenin/c-myc signaling. Cell Death Dis. 2019;10(8):576. doi:10.1038/s41419-019-1814-8
  • Wu L, Liu D, Yang Y. Enhanced expression of circular RNA circ-dcaf6 predicts adverse prognosis and promotes cell progression via sponging mir-1231 and mir-1256 in gastric cancer. Exp Mol Pathol. 2019;110:104273. doi:10.1016/j.yexmp.2019.104273
  • Chang H, Qu J, Wang J, Liang X, Sun W. Circular RNA circ_0026134 regulates non-small cell lung cancer cell proliferation and invasion via sponging mir-1256 and mir-1287. Biomed Pharmacother. 2019;112:108743. doi:10.1016/j.biopha.2019.108743
  • Liu W, Wan X, Mu Z, et al. Mir-1256 suppresses proliferation and migration of non-small cell lung cancer via regulating tctn1. Oncol Lett. 2018;16(2):1708–1714. doi:10.3892/ol.2018.8794
  • Liu ZY, Yang L, Chang HY. Clinicopathologic and prognostic relevance of mir-1256 in colorectal cancer: a preliminary clinical study. Eur Rev Med Pharmacol Sci. 2018;22(22):7704–7709. doi:10.26355/eurrev_201811_16391
  • Li Y, Kong D, Ahmad A, Bao B, Dyson G, Sarkar FH. Epigenetic deregulation of mir-29a and mir-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics. 2012;7(8):940–949. doi:10.4161/epi.21236
  • He T, Sun R, Li Y, Katusic ZS. Effects of brain-derived neurotrophic factor on microRNA expression profile in human endothelial progenitor cells. Cell Transplant. 2018;27(6):1005–1009. doi:10.1177/0963689718761658
  • Kocyigit I, Taheri S, Sener EF, et al. Serum RNA profiles in patients with autosomal dominant polycystic kidney disease according to hypertension and renal function. BMC Nephrol. 2017;18(1):179. doi:10.1186/s12882-017-0600-z
  • Sun Q, Zhang Y, Wang S, et al. Neat1 decreasing suppresses Parkinson’s disease progression via acting as mir-1301-3p sponge. J Mol Neurosci. 2021;71(2):369–378. doi:10.1007/s12031-020-01660-2
  • Chen C, Jiang L, Zhang Y, Zheng W. Foxa1-induced linc01207 facilitates head and neck squamous cell carcinoma via up-regulation of tnrc6b. Biomed Pharmacother. 2020;128:110220. doi:10.1016/j.biopha.2020.110220
  • Guo J, Chen M, Ai G, Mao W, Li H, Zhou J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through vegfa and autophagy signaling by sponging mir-5047. Biomed Pharmacother. 2019;115:108957. doi:10.1016/j.biopha.2019.108957