251
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

A Contemporary Insight of Metabolomics Approach for Type 1 Diabetes: Potential for Novel Diagnostic Targets

, & ORCID Icon
Pages 1605-1625 | Published online: 25 May 2022

References

  • Arneth B, Arneth R, Shams M. Metabolomics of Type 1 and Type 2 diabetes. IJMS. 2019;20(10):2467. doi:10.3390/ijms20102467
  • Murfitt SA, Zaccone P, Wang X, et al. Metabolomics and lipidomics study of mouse models of Type 1 diabetes highlights divergent metabolism in purine and tryptophan metabolism prior to disease onset. J Proteome Res. 2018;17(3):946–960. doi:10.1021/acs.jproteome.7b00489
  • Yi L, Swensen AC, Qian WJ. Serum biomarkers for diagnosis and prediction of type 1 diabetes. Transl Res. 2018;201:13–25. doi:10.1016/j.trsl.2018.07.009
  • Kobos E, Imiela J. Factors affecting the level of burden of caregivers of children with type 1 diabetes. Appl Nurs Res. 2015;28(2):142–149. doi:10.1016/j.apnr.2014.09.008
  • Chen M, Zheng H, Xu M, et al. Changes in hepatic metabolic profile during the evolution of STZ-induced diabetic rats via an 1H NMR-based metabonomic investigation. Biosci Rep. 2019;39(4):BSR20181379. doi:10.1042/BSR20181379
  • Jiang Q, Xu H, Yan J, et al. Sex-specific metabolic alterations in the type 1 diabetic brain of mice revealed by an integrated method of metabolomics and mixed-model. Comput Struct Biotechnol J. 2020;18:2063–2074. doi:10.1016/j.csbj.2020.07.019
  • Mathew AV, Jaiswal M, Ang L, Michailidis G, Pennathur S, Pop-Busui R. Impaired amino acid and TCA metabolism and cardiovascular autonomic neuropathy progression in Type 1 diabetes. Diabetes. 2019;68(10):2035–2044. doi:10.2337/db19-0145
  • Wang H, Zhou Q, Wan L, et al. Lipidomic analysis of meibomian glands from type-1 diabetes mouse model and preliminary studies of potential mechanism. Exp Eye Res. 2021;210:108710. doi:10.1016/j.exer.2021.108710
  • Liu J, Wang C, Liu F, Lu Y, Cheng J. Metabonomics revealed xanthine oxidase-induced oxidative stress and inflammation in the pathogenesis of diabetic nephropathy. Anal Bioanal Chem. 2015;407(9):2569–2579. doi:10.1007/s00216-015-8481-0
  • Orešič M, Simell S, Sysi-Aho M, et al. Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med. 2008;205(13):2975–2984. doi:10.1084/jem.20081800
  • Lamichhane S, Ahonen L, Dyrlund TS, et al. Cord-blood lipidome in progression to islet autoimmunity and Type 1 diabetes. Biomolecules. 2019;9(1):33. doi:10.3390/biom9010033
  • Balzano-Nogueira L, Ramirez R, Zamkovaya T, et al. Integrative analyses of TEDDY Omics data reveal lipid metabolism abnormalities, increased intracellular ROS and heightened inflammation prior to autoimmunity for type 1 diabetes. Genome Biol. 2021;22(1):39. doi:10.1186/s13059-021-02262-w
  • Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal. 2015;113:108–120. doi:10.1016/j.jpba.2014.12.017
  • Roberts LD, McCombie G, Titman CM, Griffin JL. A matter of fat: an introduction to lipidomic profiling methods. J Chromatography B. 2008;871(2):174–181. doi:10.1016/j.jchromb.2008.04.002
  • Bervoets L, Massa G, Guedens W, Louis E, Noben JP, Adriaensens P. Metabolic profiling of type 1 diabetes mellitus in children and adolescents: a case–control study. Diabetol Metab Syndr. 2017;9(1):48. doi:10.1186/s13098-017-0246-9
  • Marcovecchio ML. Importance of identifying novel biomarkers of microvascular damage in Type 1 diabetes. Mol Diagn Ther. 2020;24(5):507–515. doi:10.1007/s40291-020-00483-6
  • Frohnert BI, Rewers MJ. Metabolomics in childhood diabetes: metabolomics in childhood diabetes. Pediatr Diabetes. 2016;17(1):3–14. doi:10.1111/pedi.12323
  • Wiklund S, Johansson E, Sjöström L, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem. 2008;80(1):115–122. doi:10.1021/ac0713510
  • Knip M. Environmental triggers and determinants of beta-cell autoimmunity and Type 1 diabetes. Rev Endocr Metab Disord. 2003;4:213–223.
  • Wilson C. A lipidomic profile for the prediction of type 1 diabetes mellitus. Nat Rev Endocrinol. 2013;9(7):378. doi:10.1038/nrendo.2013.101
  • Hagopian WA, Lernmark A, Rewers MJ, et al. TEDDY-the environmental determinants of diabetes in the young: an observational clinical trial. Ann N Y Acad Sci. 2006;1079(1):320–326. doi:10.1196/annals.1375.049
  • Norris JM, Yin X, Lamb MM, et al. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for Type 1 diabetes. JAMA. 2007;298(12):1420. doi:10.1001/jama.298.12.1420
  • Stene LC, Joner G; Norwegian Childhood Diabetes Study Group. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control study. Am J Clin Nutr. 2003;78(6):1128–1134. doi:10.1093/ajcn/78.6.1128
  • Oresic M. Metabolomics in the studies of islet autoimmunity and Type 1 diabetes. Rev Diabet Stud. 2012;9(4):236–247. doi:10.1900/RDS.2012.9.236
  • Zhang Y, Kobayashi H, Mawatari K, et al. Effects of branched-chain amino acid supplementation on plasma concentrations of free amino acids, insulin, and energy substrates in young men. J Nutr Sci Vitaminol. 2011;57(1):114–117. doi:10.3177/jnsv.57.114
  • Li Q, Liu X, Yang J, et al. Plasma metabolome and circulating vitamins stratified onset age of an initial islet autoantibody and progression to Type 1 diabetes: the TEDDY Study. Diabetes. 2021;70(1):282–292. doi:10.2337/db20-0696
  • Overgaard AJ, Weir JM, De Souza DP, et al. Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis. Metabolomics. 2016;12(1):13. doi:10.1007/s11306-015-0889-1
  • Miller MR, Yin X, Seifert J, et al. Erythrocyte membrane omega-3 fatty acid levels and omega-3 fatty acid intake are not associated with conversion to type 1 diabetes in children with islet autoimmunity: the Diabetes Autoimmunity Study in the Young (DAISY). Pediatr Diabetes. 2011;12(8):669–675. doi:10.1111/j.1399-5448.2011.00760.x
  • Lamichhane S, Kemppainen E, Trošt K, et al. Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia. 2019;62(12):2287–2297. doi:10.1007/s00125-019-04980-0
  • Mattila M, Erlund I, Lee H-S, et al. Plasma ascorbic acid and the risk of islet autoimmunity and type 1 diabetes: the TEDDY study. Diabetologia. 2020;63(2):278–286. doi:10.1007/s00125-019-05028-z
  • Behrens WA, Madere R. Vitamin C and vitamin E status in the spontaneously diabetic BB rat before the onset of diabetes. Metabolism. 1991;40(1):72–76. doi:10.1016/0026-0495(91)90195-3
  • Tapia G, Suvitaival T, Ahonen L, et al. Prediction of Type 1 diabetes at birth: cord blood metabolites vs genetic risk score in the Norwegian mother, father, and child cohort. J Clin Endocrinol Metab. 2021;106(10):e4062–e4071. doi:10.1210/clinem/dgab400
  • Korte SM, Koolhaas JM, Wingfield JC, McEwen BS. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev. 2005;29(1):3–38. doi:10.1016/j.neubiorev.2004.08.009
  • Krischer JP, Lynch KF, Schatz DA, et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia. 2015;58(5):980–987. doi:10.1007/s00125-015-3514-y
  • Pflueger M, Seppänen-Laakso T, Suortti T, et al. Age- and islet autoimmunity–associated differences in amino acid and lipid metabolites in children at risk for Type 1 diabetes. Diabetes. 2011;60(11):2740–2747. doi:10.2337/db10-1652
  • La Torre D, Seppanen-Laakso T, Larsson HE, et al. Decreased cord-blood phospholipids in young age-at-onset Type 1 diabetes. Diabetes. 2013;62(11):3951–3956. doi:10.2337/db13-0215
  • Lamichhane S, Ahonen L, Dyrlund TS, et al. Dynamics of plasma lipidome in progression to islet autoimmunity and Type 1 diabetes – type 1 diabetes prediction and prevention study (DIPP). Sci Rep. 2018;8(1):10635. doi:10.1038/s41598-018-28907-8
  • Sorensen CM, Ding J, Zhang Q, et al. Perturbations in the lipid profile of individuals with newly diagnosed type 1 diabetes mellitus: lipidomics analysis of a diabetes antibody standardization program sample subset. Clin Biochem. 2010;43(12):948–956. doi:10.1016/j.clinbiochem.2010.04.075
  • Beyersdorf N, Müller N. Sphingomyelin breakdown in T cells: role in activation, effector functions and immunoregulation. Biol Chem. 2015;396(6–7):749–758. doi:10.1515/hsz-2014-0282
  • la Marca G, Malvagia S, Toni S, Piccini B, Di Ciommo V, Bottazzo GF. Children who develop type 1 diabetes early in life show low levels of carnitine and amino acids at birth: does this finding shed light on the etiopathogenesis of the disease? Nutr Diabetes. 2013;3(10):e94–e94. doi:10.1038/nutd.2013.33
  • Colombo M, Valo E, McGurnaghan SJ, et al. Biomarker panels associated with progression of renal disease in type 1 diabetes. Diabetologia. 2019;62(9):1616–1627. doi:10.1007/s00125-019-4915-0
  • Mediani A, Abas F, Maulidiani M, et al. Metabolic and biochemical changes in streptozotocin induced obese-diabetic rats treated with Phyllanthus niruri extract. J Pharm Biomed Anal. 2016;128:302–312. doi:10.1016/j.jpba.2016.06.003
  • Tofte N, Suvitaival T, Ahonen L, et al. Lipidomic analysis reveals sphingomyelin and phosphatidylcholine species associated with renal impairment and all-cause mortality in type 1 diabetes. Sci Rep. 2019;9(1):16398. doi:10.1038/s41598-019-52916-w
  • Hirayama A, Nakashima E, Sugimoto M, et al. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem. 2012;404(10):3101–3109. doi:10.1007/s00216-012-6412-x
  • Zhao L, Gao H, Lian F, Liu X, Zhao Y, Lin D. 1H-NMR-based metabonomic analysis of metabolic profiling in diabetic nephropathy rats induced by streptozotocin. Am J Physiol-Renal Physiol. 2011;300(4):F947–F956. doi:10.1152/ajprenal.00551.2010
  • Tabak O, Gelisgen R, Erman H, et al. Oxidative lipid, protein, and DNA damage as oxidative stress markers in vascular complications of diabetes mellitus. CIM. 2011;34(3):163. doi:10.25011/cim.v34i3.15189
  • Liu J, Wang D, Chen Y, et al. 1H NMR-based metabonomic analysis of serum and urine in a nonhuman primate model of diabetic nephropathy. Mol BioSyst. 2013;9(11):2645. doi:10.1039/c3mb70212j
  • Anello M, Ucciardello V, Piro S, et al. Chronic exposure to high leucine impairs glucose-induced insulin release by lowering the ATP-to-ADP ratio. Am J Physiol-Endocrinol Metab. 2001;281(5):E1082–E1087. doi:10.1152/ajpendo.2001.281.5.E1082
  • Wijekoon EP, Skinner C, Brosnan ME, Brosnan JT. Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes. Can J Physiol Pharmacol. 2004;82(7):506–514. doi:10.1139/y04-067
  • Zhang J, Yan L, Chen W, et al. Metabonomics research of diabetic nephropathy and type 2 diabetes mellitus based on UPLC–oaTOF-MS system. Anal Chim Acta. 2009;650(1):16–22. doi:10.1016/j.aca.2009.02.027
  • Salek RM, Maguire ML, Bentley E, et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics. 2007;29(2):99–108. doi:10.1152/physiolgenomics.00194.2006
  • Wei T, Zhao L, Jia J, et al. Metabonomic analysis of potential biomarkers and drug targets involved in diabetic nephropathy mice. Sci Rep. 2015;5(1):11998. doi:10.1038/srep11998
  • Prabhu KS, Arner RJ, Vunta H, Reddy CC. Up-regulation of human myo-inositol oxygenase by hyperosmotic stress in renal proximal tubular epithelial cells. J Biol Chem. 2005;280(20):19895–19901. doi:10.1074/jbc.M502621200
  • Han LD, Xia JF, Liang QL, et al. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography–mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta. 2011;689(1):85–91. doi:10.1016/j.aca.2011.01.034
  • Pena MJ, Lambers Heerspink HJ, Hellemons ME, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med. 2014;31(9):1138–1147. doi:10.1111/dme.12447
  • Tolonen N, Forsblom C, Thorn L, et al. Lipid abnormalities predict progression of renal disease in patients with type 1 diabetes. Diabetologia. 2009;52(12):2522–2530. doi:10.1007/s00125-009-1541-2
  • American Diabetes Association. Addendum 10. Cardiovascular disease and risk management: standards of medical care in diabetes—2020. Dia Care. 2020;43(Supplement 1):S111–S134. doi:10.2337/dc20-S010
  • Ting DSW, Tan KA, Phua V, Tan GSW, Wong CW, Wong TY. Biomarkers of diabetic retinopathy. Curr Diab Rep. 2016;16(12):125. doi:10.1007/s11892-016-0812-9
  • Kwan CC, Fawzi AA. Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Curr Diab Rep. 2019;19(10):95. doi:10.1007/s11892-019-1226-2
  • Wu T, Qiao S, Shi C, Wang S, Ji G. Metabolomics window into diabetic complications. J Diabetes Investig. 2018;9(2):244–255. doi:10.1111/jdi.12723
  • Barba I, Garcia-Ramírez M, Hernández C, et al. Metabolic fingerprints of proliferative diabetic retinopathy: an 1H-NMR–based metabonomic approach using vitreous humor. Invest Ophthalmol Vis Sci. 2010;51(9):4416. doi:10.1167/iovs.10-5348
  • Li X, Luo X, Lu X, Duan J, Xu G. Metabolomics study of diabetic retinopathy using gas chromatography–mass spectrometry: a comparison of stages and subtypes diagnosed by Western and Chinese medicine. Mol BioSyst. 2011;7(7):2228. doi:10.1039/c0mb00341g
  • Munipally PK, Agraharm SG, Valavala VK, Gundae S, Turlapati NR. Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients. Arch Physiol Biochem. 2011;117(5):254–258. doi:10.3109/13813455.2011.623705
  • Hasanpour M, Iranshahy M, Iranshahi M. The application of metabolomics in investigating anti-diabetic activity of medicinal plants. Biomed Pharmacother. 2020;128:110263. doi:10.1016/j.biopha.2020.110263
  • Kaddurah-Daouk R, Weinshilboum R. Metabolomic signatures for drug response phenotypes: pharmacometabolomics enables precision medicine. Clin Pharmacol Ther. 2015;98(1):71–75. doi:10.1002/cpt.134
  • Hundal RS, Krssak M, Dufour S, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49(12):2063–2069. doi:10.2337/diabetes.49.12.2063
  • Thulé PM, Umpierrez G. Sulfonylureas: a new look at old therapy. Curr Diab Rep. 2014;14(4):473. doi:10.1007/s11892-014-0473-5
  • Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557–566. doi:10.1038/nm.3159
  • Gerstein HC, Miller ME, Byington RP, Effects of intensive glucose lowering in Type 2 diabetes. N Engl J Med. 2008;358(24):2545–2559. doi:10.1056/NEJMoa0802743
  • Shen X-L, Liu H, Xiang H, Qin X-M, Du G-H, Tian J-S. Combining biochemical with 1 H NMR-based metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism. J Pharm Biomed Anal. 2016;129:80–89. doi:10.1016/j.jpba.2016.06.041
  • Godzien J, Ciborowski M, Angulo S, et al. Metabolomic approach with LC-QTOF to study the effect of a nutraceutical treatment on urine of diabetic rats. J Proteome Res. 2011;10(2):837–844. doi:10.1021/pr100993x
  • Dedrick S, Sundaresh B, Huang Q, et al. The role of gut microbiota and environmental factors in Type 1 diabetes pathogenesis. Front Endocrinol. 2020;11:78. doi:10.3389/fendo.2020.00078
  • Sen P, Dickens AM, López-Bascón MA, et al. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia. 2020;63(5):1017–1031. doi:10.1007/s00125-020-05107-6
  • Marinković T, Sysi-Aho M, Orešič M. Integrated model of metabolism and autoimmune response in β-cell death and progression to Type 1 diabetes. PLoS One. 2012;7(12):e51909. doi:10.1371/journal.pone.0051909
  • Chow J, Mazmanian SK. Getting the bugs out of the immune system: do bacterial microbiota “Fix” intestinal T cell responses? Cell Host Microbe. 2009;5(1):8–12. doi:10.1016/j.chom.2008.12.006
  • Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Nat Acad Sci. 2006;103(33):12511–12516. doi:10.1073/pnas.0601056103