306
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Mitigation of MAFLD in High Fat-High Sucrose-Fructose Fed Mice by a Combination of Genistein Consumption and Exercise Training

, , , & ORCID Icon
Pages 2157-2172 | Published online: 23 Jul 2022

References

  • Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Phys Rev. 2017;97:1351–1402.
  • Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consencus statement. J Hepatol. 2020;73(1):202–209. doi:10.1016/j.jhep.2020.03.039
  • Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14(1):32–42. doi:10.1038/nrgastro.2016.147
  • Fabbrini E, Magkos F, Mohammed SS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A. 2009;106(36):15430–15435. doi:10.1073/pnas.0904944106
  • Kim D, Choi S-Y, Park EH, et al. Nonalcoholic fatty liver disease is associated with coronary artey calcification. Hepatology. 2012;56(2):605–613. doi:10.1002/hep.25593
  • Targher G, Mantovani A, Grander C, et al. Association between non-alcoholic fatty liver disease and impaired cardiac sympathetic/parasympathetic balance in subjects with and without type 2 diabetes- The Cooperative Health Research in South Tyrol (CHRIS)-NALFD sub-study. Nutr Metab Cardiovasc Dis. 2021;31(12):3464–3473. doi:10.1016/j.numecd.2021.08.037
  • Gong H, Liu X, Cheng F. Relationship between non-alcoholic fatty liver disease and cardiac arrhythmia: a systematic review and meta-analysis. J Int Med Res. 2021;49(9):3000605211047074. doi:10.1177/03000605211047074
  • Park JH, Kim G, Kim H, et al. The association of hepatic steatosis and fibrosis with heart failure and mortality. Cardiovasc Diabetol. 2021;20(1):197. doi:10.1186/s12933-021-01374-8
  • Simon TG, Roelstraete B, Hagstrom H, Sundstrom J, Ludvigsson JF. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort. Gut. 2021:325724. doi:10.1136/gutjnl-2021-325724
  • Musso G, Gambino R, Cassader M, Pagano GA. Meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver. Hepatology. 2010;52(1):79–104. doi:10.1002/hep.23623
  • Bril F, Barb D, Portillo-Sanchez P, et al. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology. 2017;65(4):1132–1144. doi:10.1002/hep.28985
  • Diehl AM, Day C, Longo DL. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med. 2017;377(21):2063–2072. doi:10.1056/NEJMra1503519
  • Manne V, Handa P, Kowdley KV. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis. 2018;22(1):23–37. doi:10.1016/j.cld.2017.08.007
  • Association AG. American gastroentrological association medical position statement: nonalcoholic fatty liver disease. Gastroenterol. 2002;123(5):1702–1704. doi:10.1053/gast.2002.36569
  • Kugelmas M, Hill DB, Vivian B, Marsano L, McClain CJ. Cytokines and NASH: a pilot study o fthe effects of lifestyle modification and vitamin E. Hepatology. 2003;38(2):413–419. doi:10.1053/jhep.2003.50316
  • van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H. The effects of physical exercise on fatty liver disease. Gene Exp. 2018;18(2):89–101. doi:10.3727/105221617X15124844266408
  • Cho J, Kim S, Lee S, Kang H. Effect of training intensity on nonalcoholic fatty liver disease. Med Sci Sports Exerc. 2015;47(8):1624–1634. doi:10.1249/MSS.0000000000000595
  • Keating SE, George J, Johnson NA. The benefits of exercise for patients with non-alcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 2015;9(10):1247–1250. doi:10.1586/17474124.2015.1075392
  • Thoma C, Day CP, Trenell MI. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systemic review. J Hepatol. 2012;56(1):255–266. doi:10.1016/j.jhep.2011.06.010
  • Hallsworth K, Thoma C, Hollingsworth KG, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial. Clin Sci. 2015;129(12):1097–1105. doi:10.1042/CS20150308
  • Kantartzis K, Thamer C, Peter A, et al. High cardiorespiratory fitness is an independent predictor of the reduction in liver fat during a lifestyle intervention in non-alcoholic fatty liver disease. Gut. 2009;58(9):1281–1288. doi:10.1136/gut.2008.151977
  • Bacchi E, Negri C, Targher G, et al. Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetes subjects with nonalcoholic fatty liver disease (the RAED2 Randomized Trial). Hepatology. 2013;58(4):1287–1295. doi:10.1002/hep.26393
  • Keating SE, Hackett DA, Parker HM, et al. Effect of aerobic training dose on liver fat and visceral adiposity. J Hepatol. 2015;63(1):174–182. doi:10.1016/j.jhep.2015.02.022
  • Trefts E, Williams AS, Wasserman DH. Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci. 2015;135:203–225.
  • Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev. 2006;86(1):205–243. doi:10.1152/physrev.00023.2004
  • Golabi P, Locklear CT, Austin P, et al. Effectiveness of exercise in hepatic fat mobilization in non-alcoholic fatty liver disease: systematic review. World J Gastroenterol. 2016;22(27):6318–6327. doi:10.3748/wjg.v22.i27.6318
  • Zaheer K, Humayoun Akhtar M. An updated review of dietary isoflavones: nutrition, processing, bioavailability and impacts on human health. Crit Rev Food Sci Nutr. 2017;57(6):1280–1293. doi:10.1080/10408398.2014.989958
  • Sharifi-Rad J, Quispe C, Imran M, et al. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid Med Cell Longev. 2021;2021:3268136. doi:10.1155/2021/3268136
  • Nazari-Khanamiri F, Ghasemnejad-Berenji M. Cellular and molecular mechanisms of genistein in prevention and treatment of diseases: an overview. J Food Biochem. 2021;45(11). doi:10.1111/jfbc.13972
  • Ziegler RG. Phytoestrogens and breast cancer. Am J Clin Nutr. 2004;79(2):183–184. doi:10.1093/ajcn/79.2.183
  • Park Y-J, Ko JW, Jeon S, Kwon YH. Protective effects of genistein against neuronal degeneration in ApoE −/− mice fed a high-fat diet. Nutrients. 2016;8(11):1–11. doi:10.3390/nu8110692
  • Rajput MS, Sarkar PD. Modulation of neuro-inflammatory condition, acetlcholinesterase and antioxidant levels by genistein attenuates diabetes associated cognitive decline in mice. Chem Biol Interact. 2017;268:93–102. doi:10.1016/j.cbi.2017.02.021
  • Lee YM, Choi JS, Kim MH, Jung MH, Lee YS, Song J. Effects of dietary genistein on hepatic lipid metabolism and mitochondrial function in mice fed high-fat diets. Nutrition. 2006;22(9):956–964. doi:10.1016/j.nut.2005.12.014
  • Choi JS, Song J. Effect of genistein on insulin resistance, renal lipid metabolism, and antioxidative activities in ovariectomized rats. Nutrition. 2009;25(6):676–685. doi:10.1016/j.nut.2008.11.027
  • Kim MH, Kang KS, Lee YS. The inhibitory effect of genistein on hepatic steatosis is linked to visceral adipocyte metabolism in mice with diet-induced non-alcoholic fatty liver disease. Br J Nutr. 2010;104(9):1333–1342. doi:10.1017/S0007114510002266
  • Zamani-Garmsiri F, Hashemnia SMR, Shabani M, Bagherieh M, Emamgholipour S, Meshkani R. Combination of metformin and genistein alleviates non-alcoholic fatty liver disease in high-fat diet-fed mice. J Nutr Biochem. 2021;87:108505. doi:10.1016/j.jnutbio.2020.108505
  • Rockwood SS, Broderick TL, Al-Nakkash L. Feeding obese diabetic mice a genistein diet induces thermogenic and metabolic change. J Med Food. 2018;21(4):332–339. doi:10.1089/jmf.2017.0084
  • Rockwood SS, Mason D, Lord R, Lamar P, Prozialeck WC, Al-Nakkash L. Genistein diet improves body weight, serum glucose and triglyceride levels in both male and female ob/ob mice. Diabetes Metab Syndr Obess. 2019;12:20111–22021.
  • Witayavanitkul N, Werwatganon D, Chayanupatkul M, Klaikeaw N, Sanguanrungsirikul S, Siriviriyakul P. Genistein and exercise modulated lipid peroxidation and improved statohepatitis in ovariectomized rats. BMC Complement Altern Med. 2020;20(1):162. doi:10.1186/s12906-020-02962-z
  • Sabag A, Keating SE, Way KL, et al. The association between cardiorespiratory fitness, liver fat and insulin resistance in adults with or without type 2 diabetes: a cross sectional-analysis. BMC Sports Sci Med Rehabil. 2021;13(1):40. doi:10.1186/s13102-021-00261-9
  • Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51:1961–1971.
  • Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79(4):537–543. doi:10.1093/ajcn/79.4.537
  • Harrington S. The role of sugar-sweetened beverage consumption in adolescent obesity: a review of the literature. J Sch Nurs. 2008;24(1):3–12. doi:10.1177/10598405080240010201
  • Forshee RA, Storey ML. Total beverage consumption and beverage choices among children and adolescents. Int J Food Sci Nutr. 2003;54(4):297–307. doi:10.1080/09637480120092143
  • Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics. 2006;118(4):1388–1393. doi:10.1542/peds.2006-1212
  • Schwimmer JB, Behling C, Newbury R, et al. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology. 2005;42(3):641–649. doi:10.1002/hep.20842
  • Ortega-Santos CP, Al-Nakkash L, Whisner CM. Exercise and/or genistein treatment impact gut microbiota and inflammation after 12 weeks on a high-fat, high-sugar diet in C57BL/6 mice. Nutrients. 2020;12(11):3410. doi:10.3390/nu12113410
  • Shapiro A, Mu W, Roncal C, Cheng K-Y, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295(5):R1370–1375. doi:10.1152/ajpregu.00195.2008
  • Al-Nakkash L, Clarke LL, Rottinghaus GE, Chen YJ, Cooper K, Rubin LJ. Dietary genistein stimulates anion secretion across female murine intestine. J Nutr. 2006;136(11):2785–2790. doi:10.1093/jn/136.11.2785
  • Xu X, Wang HJ, Murphy PA, Cook L, Hendich S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. J Nutr. 1994;124(6):825–832. doi:10.1093/jn/124.6.825
  • James DE, Burleigh KM, Kragen EW, Chisholm DJ. Effect of acute exercise and prolonged training on insulin response to intravenous glucose in vivo in rat. J Appl Physiol. 1983;55(6):1660–1664. doi:10.1152/jappl.1983.55.6.1660
  • Broderick TL, Sennott JM, Gutkowska J, Jankowski M. Anti-inflammatory and angiogenic effects of exercise training in cardiac muscle of diabetic mice. Diabetes Metab Syndr Obes. 2019;12:565–573. doi:10.2147/DMSO.S197127
  • Hoydal MA, Wislofff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil. 2007;14(6):753–760. doi:10.1097/HJR.0b013e3281eacef1
  • Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes: the American college of sports medicine and the American diabetes association: joint position statement. Diabetes Care. 2010;33(12):e147–167. doi:10.2337/dc10-9990
  • Kato K-I, Takeshita Y, Misu H, Zen Y, Kaneko S, Takamura T. Liver steatosis is associated with insulin resistance in skeletal muscle rather than in the liver in Japanese patients with non-alcoholic fatty liver disease. J Diabetes Investig. 2015;6:158–163. doi:10.1111/jdi.12271
  • Eckard C, Cole R, Lockwood J, et al. Prospective histopathologic evaluation of lifestyle modification in nonalcoholic fatty liver disease: a a randomized trial. Therap Adv Gastroenterol. 2013;6(4):249–259. doi:10.1177/1756283X13484078
  • Jin YJ, Kim KM, Hwang SS, et al. Exercise and diet modification in non-obese non-alcoholic fatty liver disease: analysis of biopsies of living liver donors. J Gastroenterol Hepatol. 2012;27(8):1341–1347. doi:10.1111/j.1440-1746.2012.07165.x
  • Rehman K, Ali MB, Akash MSH. Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses. Biomed Pharmacother. 2019;112:108670. doi:10.1016/j.biopha.2019.108670
  • Zheng W, Li L, Li H. Phytochemicals modulate pancreatic islet B cell function through glucagon-like peptide-1-related mechanisms. Biochem Pharmacol. 2021;197:114817. doi:10.1016/j.bcp.2021.114817
  • Kwon YM, Oh SW, Hwang SS, Lee CB, Kwon H, Chung GE. Association of nonalcoholic fatty liver disease with components of metabolic syndrome according to body mass index in Korean adults. Am J Gastroenterol. 2012;107(12):1852–1858. doi:10.1038/ajg.2012.314
  • Sayiner M, Koenig A, Henry L, Younossi ZM. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in the United States and the rest of the world. Clin Liver Dis. 2016;20(2):205–214. doi:10.1016/j.cld.2015.10.001
  • Hebbard L, George J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2011;8(1):35–44. doi:10.1038/nrgastro.2010.191
  • Ouyang X, Cirillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993–999. doi:10.1016/j.jhep.2008.02.011
  • Bertot LC, Adams LA. The natural course of non-alcoholic fatty liver disease. Int J Mol Sci. 2016;17:774.
  • Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from a hepatologist’s point of view. Biochim Biophys Acta Mol Basis Dis. 2019;1865(5):943–953. doi:10.1016/j.bbadis.2018.06.023
  • Zhong F, Zhou X, Xu J, Gao L. Rodent models of nonalcoholic fatty liver disease. Digestion. 2020;101(5):522–535. doi:10.1159/000501851
  • Berardo C, Di Pasqua LG, Cagna M, Richelmi P, Vairetti M, Ferrigno A. Nonalcolhic fatty liver disease and non-alcoholic steatohepatitis: current issues and future perspectives in preclinical and clinical research. Int J Mol Sci. 2020;21(24):9646. doi:10.3390/ijms21249646
  • Zhang H, Leveille M, Courty E, Gunes A, Nguyen BN, Estall JL. Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab. 2020;319(5):E863–E876. doi:10.1152/ajpendo.00321.2020
  • Ainsworth BE, Haskell WL, Herrmann SD, et al. compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581. doi:10.1249/MSS.0b013e31821ece12
  • Broderick TL, Jankowski M, Gutkowska J. The effects of exercise training and caloric restriction on the cardiac oxytocin natriuretic peptide system in the diabetic mouse. Diabetes Metab Syndr Obes. 2017;10:27–36. doi:10.2147/DMSO.S115453
  • Morton GJ, Kaiyala KJ, Fisher JD, Ogimoto K, Schwartz MW, Wisse BE. Identification of a physiological role for leptin in the regulation of ambulatory activity and wheel running in mice. Am J Physiol Endocrinol Metab. 2011;300(2):E392–401. doi:10.1152/ajpendo.00546.2010
  • Song G-Y, Ren L-P, Chen S-C, et al. Similar changes in muscle lipid metabolism are induced by chronic high-fructose feeding and high-fat feeding in C57BL/J6 mice. Clin Exp Pharmacol Physiol. 2012;39(12):1011–1018. doi:10.1111/1440-1681.12017
  • Turner N, Bruce CR, Beale SM, et al. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes. 2007;56(8):2085–2092. doi:10.2337/db07-0093
  • Yang JY, Lee SJ, Park HW, Cha YS. Effect of genistein with carnitine administration on lipid parameters and obesity in C57Bl/6J mice fed a high-fat diet. J Med Food. 2006;9(4):459–467. doi:10.1089/jmf.2006.9.459
  • Yalniz M, Bahcecioglu IH, Kuzu N, et al. Preventative role of genistein in an experimental non-alcoholic steatohepatitis model. J Gastroenterol Hepatol. 2007;22(11):2009–2014. doi:10.1111/j.1440-1746.2006.04681.x
  • Arunkumar E, Karthik D, Anuradha CV. Genistein sensitizes hepatic insulin signaling and modulates lipid regulatory genes through p70 ribosomal S6 kinase-1 inhibition in high-fat-high fructose diet-fed mice. Pharm Biol. 2013;51(7):815–824. doi:10.3109/13880209.2013.766896
  • Consoli A, Nurjhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes. 1989;38(5):550–557. doi:10.2337/diab.38.5.550
  • Firth RG, Bell PM, Marsh HM, Hansen I, Rizza RA. Postprandial hyperglycemia in patients with noninsulin-dependent diabetes mellitus. Role of hepatic and extrahepatice tissues. J Clin Invest. 1986;77(5):1525–1532. doi:10.1172/JCI112467
  • Pereira CD, Azevedo I, Monteiro R, Martins MJ. 11B-hydroxysteroid dehydrogenase type-1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab. 2012;14(10):869–881. doi:10.1111/j.1463-1326.2012.01582.x
  • Krarup T, Krarup T, Hagen C. Do patients with type 2 diabetes mellitus have an increased prevalence of Cushing’s syndrome. DIabets Metab Res Rev. 2012;28(3):219–227. doi:10.1002/dmrr.2262
  • Zhang X, Yang S, Chen J, Su Z. Unravelling the regulation of hepatic gluconeogenesis. Front Endocrinol. 2019;9:802. doi:10.3389/fendo.2018.00802
  • Tagawa N, Kubota S, Kobayashi Y, Kato I. Genistein inhibits glucocorticoid amplification in adipose tissue by suppression of 11Beta-hydroxysteroid dehydrogenase type 1. Steroids. 2015;93:77–86. doi:10.1016/j.steroids.2014.11.003
  • van Poelje PD, Potter SC, Chandramouli VC, Landau BR, Dang Q, Erion MD. Inhibition of fructose 1,6-bisphosphatase reduces excessive endogenous glucose production and attenuates hyperglycemia in zucker diabetic fatty rats. Diabetes. 2006;55(6):1747–1754. doi:10.2337/db05-1443
  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–1131. doi:10.1172/JCI0215593
  • Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin resistant mice. Cell Metab. 2011;13(4):376–388. doi:10.1016/j.cmet.2011.03.009
  • Zhang C, Chen X, Zhu RM, et al. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicol Lett. 2012;212(3):229–240. doi:10.1016/j.toxlet.2012.06.002
  • Choi YR, Shim JH, Kim MJ. Genistin: a novel potent anti-adipogenic and anti-lipogenic agent. Molecules. 2020;25(9):2042. doi:10.3390/molecules25092042
  • Seidman L, Kruger A, Kegel-Hubner V, Seehofer D, Damm G. Influence of genistein on hepatic lipid metabolism in an in vitro model of hepatic steatosis. Molecules. 2021;26(4):1156. doi:10.3390/molecules26041156
  • Shukla A, Brandsch C, Bettzieche A, Hirche F, Stangl GL, Eder K. Isoflavone-poor soy protein alters lipid metabolism of rats by SREBP-mediated down-regulation of hepatic genes. J Nutr Biochem. 2007;18(5):313–321. doi:10.1016/j.jnutbio.2006.05.007
  • Wu H, Jin M, Han D, et al. Protective effects of aerobic swimming training on high-fat diet induced nonalcoholic fatty liver disease: regulation of lipid metabolism via PANDER-AKT pathway. Biochem Biophys Res Commun. 2015;458(4):862–869. doi:10.1016/j.bbrc.2015.02.046
  • Suk M, Shin Y. Effect of high-intensity exercise and high-fat diet on lipid metabolism in the liver of rats. J Exerc Nutr Biochem. 2015;19(4):289–295. doi:10.5717/jenb.2015.15122303
  • Tsuzuki T, Shinozaki S, Nakamoto H, et al. Voluntary exercise can ameliorate insulin resistance by reducing iNOS-mediated S-nitrosylation of Akt in the liver in obese rats. PLoS One. 2015;10(7):e0132029. doi:10.1371/journal.pone.0132029
  • Rector RS, Thyfault JP, Morris RT, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka long-Evans Tokushima fatty rats. Am J Physiol Gastrointest Liver Physiol. 2008;294(3):G619–626. doi:10.1152/ajpgi.00428.2007
  • Cho J, Lee I, Kim D-H, et al. Effect of aerobic exercise training on non-alcoholic fatty liver disease induced by a high fat diet in C57BL/6 mice. J Exerc Nutr Biochem. 2014;18(4):339–346. doi:10.5717/jenb.2014.18.4.339