174
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Role of Changes in Cumulative Lipid Parameter Burden in the Pathogenesis of Type 2 Diabetes Mellitus: A Cohort Study of People Aged 35–65 Years in Rural China

, , , , , , & show all
Pages 1831-1843 | Published online: 16 Jun 2022

References

  • Murray CJ, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1223–1249.
  • Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–1222.
  • WHO. WHO global report on diabetes; 2016. Available from: https://www.who.int/diabetes/global-report/en/. Accessed June 9, 2022.
  • Ley S, Hamdy O, Mohan V, Hu F. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383(9933):1999–2007. doi:10.1016/S0140-6736(14)60613-9
  • Wright A, Kontopantelis E, Emsley R, et al. Cardiovascular risk and risk factor management in type 2 diabetes mellitus. Circulation. 2019;139(24):2742–2753. doi:10.1161/CIRCULATIONAHA.118.039100
  • Skyler JS. Diabetes mellitus: pathogenesis and treatment strategies. Cheminform. 2010;35(42):4113–4117.
  • Berumen J, Orozco L, Betancourt-Cravioto M, et al. Influence of obesity, parental history of diabetes, and genes in type 2 diabetes: a case-control study. Sci Rep. 2019;9(1):2748. doi:10.1038/s41598-019-39145-x
  • Fernandez C, Surma M, Klose C, et al. Plasma lipidome and prediction of type 2 diabetes in the population-based malmö diet and cancer cohort. Diabetes Care. 2020;43(2):366–373. doi:10.2337/dc19-1199
  • Greenhill C. Dietary factors in the risk of T2DM. Nat Rev Endocrinol. 2020;16(10):537. doi:10.1038/s41574-020-0401-5
  • Zheng J, Sharp S, Imamura F, et al. Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries. BMJ. 2020;370:m2194. doi:10.1136/bmj.m2194
  • Hu Y, Ding M, Sampson L, et al. Intake of whole grain foods and risk of type 2 diabetes: results from three prospective cohort studies. BMJ. 2020;370:m2206. doi:10.1136/bmj.m2206
  • Du H, Guo Y, Bennett D, et al. Red meat, poultry and fish consumption and risk of diabetes: a 9 year prospective cohort study of the China Kadoorie Biobank. Diabetologia. 2020;63(4):767–779. doi:10.1007/s00125-020-05091-x
  • Sui G, Jia L, Song N, et al. Aberrant expression of HDL-bound microRNA induced by a high-fat diet in a pig model: implications in the pathogenesis of dyslipidaemia. BMC Cardiovasc Disord. 2021;21(1):280. doi:10.1186/s12872-021-02084-5
  • Griffin B. Relevance of liver fat to the impact of dietary extrinsic sugars on lipid metabolism. Proc Nutr Soc. 2015;74(3):208–214. doi:10.1017/S0029665115002050
  • Krittanawong C, Isath A, Hahn J, et al. Mushroom consumption and cardiovascular health: a systematic review. Am J Med. 2021;134(5):637–642.e632. doi:10.1016/j.amjmed.2020.10.035
  • Ma J, Zheng Y, Tang W, et al. Dietary polyphenols in lipid metabolism: a role of gut microbiome. Anim Nutr. 2020;6(4):404–409. doi:10.1016/j.aninu.2020.08.002
  • Norton K, Eston RG. Kinanthropometry and Exercise Physiology. 4th ed. London: Routledge; 2018.
  • Consultation WHO Expert. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157–163.
  • Alberti K, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–553. doi:10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
  • Dai L, Xu J, Zhang Y, et al. Cumulative burden of lipid profiles predict future incidence of ischaemic stroke and residual risk. Stroke Vasc Neurol. 2021;6(4):581–588. doi:10.1136/svn-2020-000726
  • Fulcher I, Tchetgen Tchetgen E, Williams P. Mediation analysis for censored survival data under an accelerated failure time model. Epidemiol. 2017;28(5):660–666. doi:10.1097/EDE.0000000000000687
  • Qin H, Chen Z, Zhang Y, et al. Triglyceride to high-density lipoprotein cholesterol ratio is associated with incident diabetes in men: a retrospective study of Chinese individuals. J Diabetes Investig. 2020;11(1):192–198. doi:10.1111/jdi.13087
  • Miller M, Stone N, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123(20):2292–2333. doi:10.1161/CIR.0b013e3182160726
  • Parhofer K. Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes Metab J. 2015;39(5):353–362. doi:10.4093/dmj.2015.39.5.353
  • Brunzell J, Hokanson J. Dyslipidemia of central obesity and insulin resistance. Diabetes Care. 1999;22(Suppl 3):C10–C13.
  • Bizzotto R, Jennison C, Jones AG, Kurbasic A, Mari A. Processes underlying glycemic deterioration in type 2 diabetes: an IMI DIRECT study. Diabet Care. 2021;44(2):511–518. doi:10.2337/dc20-1567
  • Briaud I, Harmon J, Kelpe C, Segu V, Poitout V. Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes. 2001;50(2):315–321. doi:10.2337/diabetes.50.2.315
  • Lee Y, Hirose H, Ohneda M, Johnson J, McGarry J, Unger R. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci USA. 1994;91(23):10878–10882. doi:10.1073/pnas.91.23.10878
  • Rachek L. Free fatty acids and skeletal muscle insulin resistance. Prog Mol Biol Transl Sci. 2014;121:267–292.
  • Drew B, Rye K, Duffy S, Barter P, Kingwell B. The emerging role of HDL in glucose metabolism. Nat Rev Endocrinol. 2012;8(4):237–245. doi:10.1038/nrendo.2011.235
  • Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Fogelman AM. Antiinflammatory properties of HDL. Rev Endocr Metab Disord. 2004;5(8):351–358. doi:10.1023/B:REMD.0000045107.71895.b2
  • Calkin A, Drew B, Ono A, et al. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation. 2009;120(21):2095–2104. doi:10.1161/CIRCULATIONAHA.109.870709
  • Li X, Su T, Xiao H, et al. Association of the HDL-c level with HsCRP, IL-6, U-NAG, RBP and Cys-C in type 2 diabetes mellitus, hypertension, and chronic kidney disease: an epidemiological survey. Diabetes Metab Syndr Obes. 2020;13:3645–3654. doi:10.2147/DMSO.S265735
  • Annema W, von Eckardstein A. High-density lipoproteins. Multifunctional but vulnerable protections from atherosclerosis. Circ J. 2013;77(10):2432–2448. doi:10.1253/circj.CJ-13-1025
  • von Eckardstein A, Widmann C. High-density lipoprotein, beta cells, and diabetes. Cardiovasc Res. 2014;103(3):384–394. doi:10.1093/cvr/cvu143
  • Guérin M, Le Goff W, Lassel T, Van Tol A, Steiner G, Chapman M. Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense LDL in type 2 diabetes: impact of the degree of triglyceridemia. Arterioscler Thromb Vasc Biol. 2001;21(2):282–288. doi:10.1161/01.ATV.21.2.282
  • Berneis K, Krauss R. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res. 2002;43(9):1363–1379. doi:10.1194/jlr.R200004-JLR200
  • Bendinelli B, Palli D, Masala G, et al. Association between dietary meat consumption and incident type 2 diabetes: the EPIC-InterAct study. Diabetologia. 2013;56(1):47–59.
  • Wolk A. Potential health hazards of eating red meat. J Intern Med. 2017;281(2):106–122. doi:10.1111/joim.12543
  • Pan A, Sun Q, Bernstein A, Manson J, Willett W, Hu F. Changes in red meat consumption and subsequent risk of type 2 diabetes mellitus: three cohorts of US men and women. JAMA Intern Med. 2013;173(14):1328–1335. doi:10.1001/jamainternmed.2013.6633
  • O’Connor L, Kim J, Clark C, Zhu W, Campbell W. Effects of total red meat intake on glycemic control and inflammatory biomarkers: a meta-analysis of randomized controlled trials. Adv Nutr. 2021;12(1):115–127. doi:10.1093/advances/nmaa096
  • Ibsen D, Jakobsen M, Halkjær J, et al. Replacing red meat with other nonmeat food sources of protein is associated with a reduced risk of type 2 diabetes in a Danish cohort of middle-aged adults. J Nutr. 2021;151(5):1241–1248. doi:10.1093/jn/nxaa448
  • Würtz A, Jakobsen M, Bertoia M, et al. Replacing the consumption of red meat with other major dietary protein sources and risk of type 2 diabetes mellitus: a prospective cohort study. Am J Clin Nutr. 2021;113(3):612–621. doi:10.1093/ajcn/nqaa284
  • Cocate P, Natali A, de Oliveira A, et al. Red but not white meat consumption is associated with metabolic syndrome, insulin resistance and lipid peroxidation in Brazilian middle-aged men. Eur J Prev Cardiol. 2015;22(2):223–230. doi:10.1177/2047487313507684
  • Peng H, Xie X, Pan X, et al. Association of meat consumption with NAFLD risk and liver-related biochemical indexes in older Chinese: a cross-sectional study. BMC Gastroenterol. 2021;21(1):221. doi:10.1186/s12876-021-01688-7
  • Ferramosca A, Zara V. Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 2014;20(7):1746–1755. doi:10.3748/wjg.v20.i7.1746
  • Adiels M, Olofsson S, Taskinen M, Borén J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28(7):1225–1236. doi:10.1161/ATVBAHA.107.160192
  • Rocha D, Caldas A, Oliveira L, Bressan J, Hermsdorff H. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis. 2016;244:211–215. doi:10.1016/j.atherosclerosis.2015.11.015
  • Thanopoulou AC, Karamanos BG, Angelico FV, et al. Dietary fat intake as risk factor for the development of diabetes: multinational, multicenter study of the Mediterranean Group for the Study of Diabetes (MGSD). Diabetes Care. 2003;26(2):302–307. doi:10.2337/diacare.26.2.302