351
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

ViphyllinTM, a Standardized Black Pepper Extract Exerts Antihyperglycemic Effect and Improves Sciatic Nerve Conduction in High Fat Diet/Streptozotocin-Induced Diabetic Model Rats

, ORCID Icon &
Pages 1819-1829 | Published online: 15 Jun 2022

References

  • International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels, Belgium: International Diabetes Federation; 2017.
  • Vinik AI, Nevoret M-L, Casellini C, et al. Diabetic neuropathy. Endocrinol Metab Clin North Am. 2013;42:747–787. doi:10.1016/j.ecl.2013.06.001
  • Várkonyi T, Körei A, Putz Z, et al. Advances in the management of diabetic neuropathy. Minerva Med. 2017;108:419–437. doi:10.23736/S0026-4806.17.05257-0
  • Callaghan BC, Price RS, Chen KS, et al. The importance of rare subtypes in diagnosis and treatment of peripheral neuropathy: a review. JAMA Neurol. 2015;72:1510–1518. doi:10.1001/jamaneurol.2015.2347
  • Abbott CA, Malik RA, van Ross ER, et al. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U.K. Diabetes Care. 2011;34:2220–2224. doi:10.2337/dc11-1108
  • Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments [published correction appears in Diabetes Care. Diabetes Care. 2010;33:2285–2293. doi:10.2337/dc10-1303
  • von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012;73:638–652. doi:10.1016/j.neuron.2012.02.008
  • Kioskli K, Scott W, Winkley K, et al. Psychosocial factors in painful diabetic neuropathy: a systematic review of treatment trials and survey studies. Pain Med. 2019;20:1756–1773. doi:10.1093/pm/pnz071
  • Pop-Busui R, Boulton AJ, Feldman EL, et al. Diabetic neuropathy: a position statement by the American diabetes association. Diabetes Care. 2017;40:136–154. doi:10.2337/dc16-2042
  • Javed S, Alam U, Malik RA. Mirogabalin and emerging therapies for diabetic neuropathy. J Pain Res. 2018;11:1559–1566. doi:10.2147/JPR.S145999
  • Freeman R, Durso-Decruz E, Emir B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a range of doses. Diabetes Care. 2008;31:1448–1454. doi:10.2337/dc07-2105
  • Wiffen PJ, Derry S, Bell RF, et al. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017;6:Cd007938. doi:10.1002/14651858.CD007938.pub4
  • Tiwari R, Siddiqui MH, Mahmood T, et al. Herbal remedies: a boon for diabetic neuropathy. J Diet Suppl. 2019;16:470–490. doi:10.1080/19390211.2018.1441203
  • Lee J, Noh S, Lim S, et al. Plant extracts for type 2 diabetes: from traditional medicine to modern drug discovery. Antioxidants. 2021;10(1):81. doi:10.3390/antiox10010081
  • Shah MA, Reanmongkol W, Radenahmad N, et al. Anti-hyperglycemic and anti-hyperlipidemic effects of rhinacanthins-rich extract from Rhinacanthus nasutus leaves in nicotinamide-streptozotocin induced diabetic rats. Biomed Pharmacother. 2019;113:108702. doi:10.1016/j.biopha.2019.108702
  • Shah MA, Khalil R, Ul-Haq Z, et al. α-Glucosidase inhibitory effect of rhinacanthins-rich extract from Rhinacanthus nasutus leaf and synergistic effect in combination with acarbose. J Funct Foods. 2017;36:325–331. doi:10.1016/j.jff.2017.07.021
  • Zhao LL, Makinde EA, Shah MA, Olatunji OJ, Panichayupakaranant P. Rhinacanthins-rich extract and rhinacanthin C ameliorate oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic nephropathy. J Food Biochem. 2019;43(4):e12812. doi:10.1111/jfbc.12812
  • Rasoulian B, Hajializadeh Z, Esmaeili-Mahani S, et al. Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy. J Physiol Sci. 2019;69:57–64. doi:10.1007/s12576-018-0620-x
  • Salehi B, Zakaria ZA, Gyawali R, et al. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules. 2019;24:1364. doi:10.3390/molecules24071364
  • Musenga A, Mandrioli R, Ferranti A, et al. Analysis of aromatic and terpenic constituents of pepper extracts by capillary electrochromatography. J Sep Sci. 2007;30:612–619. doi:10.1002/jssc.200600456
  • Viveros-Paredes JM, Gonzalez-Castaneda RE, Gertsch J, et al. Neuroprotective effects of beta-caryophyllene against dopaminergic neuron injury in a murine model of Parkinson’s disease induced by MPTP. Pharmaceuticals. 2017;10:60. doi:10.3390/ph10030060
  • Guo K, Mou X, Huang J, et al. Trans-caryophyllene suppresses hypoxia-induced neuroinflammatory responses by inhibiting NF-kappa B activation in microglia. J Mol Neurosci. 2014;54:41–48. doi:10.1007/s12031-014-0243-5
  • Ojha S, Javed H, Azimullah S, et al. beta-caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol Cell Biochem. 2016;418:59–70. doi:10.1007/s11010-016-2733-y
  • Klauke AL, Racz I, Pradier B, et al. The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur Neuropsychopharmacol. 2014;24:608–620. doi:10.1016/j.euroneuro.2013.10.008
  • Kumawat VS, Kaur G. Therapeutic potential of cannabinoid receptor 2 in the treatment of diabetes mellitus and its complications. Eur J Pharmacol. 2019;862:172628. doi:10.1016/j.ejphar.2019.172628
  • Geddo F, Scandiffio R, Antoniotti S, et al. PipeNig®-FL, a fluid extract of black pepper (Piper nigrum L.) with a high standardized content of Trans-β-caryophyllene, reduces lipid accumulation in 3T3-L1 preadipocytes and improves glucose uptake in C2C12 myotubes. Nutrients. 2019;11:2788. doi:10.3390/nu11112788
  • Sudeep HV, Venkatakrishna K, Gouthamchandra K, et al. A standardized black pepper seed extract containing β-caryophyllene improves cognitive function in scopolamine-induced amnesia model mice via regulation of brain-derived neurotrophic factor and MAPK proteins. J Food Biochem. 2021;45:e13994. doi:10.1111/jfbc.13994
  • Venkatakrishna K, Sundeep K, Sudeep HV, et al. Viphyllin, a standardized black pepper seed extract exerts antinociceptive effects in murine pain models via activation of cannabinoid receptor CB2, peroxisome proliferator-activated receptor-alpha and TRPV1 ion channels. J Pain Res. 2022;15:355–366. doi:10.2147/JPR.S351513
  • Zhang M, Lv XY, Li J, et al. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp Diabetes Res. 2008;2008:704045. doi:10.1155/2008/704045
  • Leng J, Li X, Tian H, et al. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/HO-1 pathway. BMC Complement Med Ther. 2020;20:126. doi:10.1186/s12906-020-02930-7
  • Wang X, Huan Y, Li C, et al. Diphenyl diselenide alleviates diabetic peripheral neuropathy in rats with streptozotocin-induced diabetes by modulating oxidative stress. Biochem Pharmacol. 2020;182:114221. doi:10.1016/j.bcp.2020.114221
  • Atanasovska E, Tasic V, Slaninka-miceska M, et al. Six-week follow-up of metabolic effects induced by a high-fat diet and streptozotocin in a rodent model of type 2 diabetes mellitus. Contributions Sec Med Sci. 2014;35:169–179.
  • Veerapur VP, Prabhakar KR, Kandadi MR, et al. Antidiabetic effect of Dodonaea viscosa aerial parts in high fat diet and low dose streptozotocin-induced type 2 diabetic rats: a mechanistic approach. Pharm Biol. 2010;48:1137–1148. doi:10.3109/13880200903527736
  • Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52:313–320. doi:10.1016/j.phrs.2005.05.004
  • Shaham O, Wei R, Wang TJ, et al. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol. 2008;4:214. doi:10.1038/msb.2008.50
  • Tesfaye S, Boulton AJ, Dickenson AH. Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care. 2013;36:2456–2465. doi:10.2337/dc12-1964
  • Didangelos T, Doupis J, Veves A. Painful diabetic neuropathy: clinical aspects. Handbook Clin Neurol. 2014;126:53–61.
  • Wang P, Wen C, Olatunji OJ. Anti-inflammatory and antinociceptive effects of Boesenbergia rotunda polyphenol extract in diabetic peripheral neuropathic rats. J Pain Res. 2022;15:779–788. doi:10.2147/JPR.S359766
  • Nawaz NUA, Saeed M, Rauf K, et al. Antinociceptive effectiveness of Tithonia tubaeformis in a vincristine model of chemotherapy induced painful neuropathy in mice. Biomed Pharmacother. 2018;103:1043–1051. doi:10.1016/j.biopha.2018.04.115
  • Laddha AP, Garud MS, Kulkarni YA. Neuroprotective effect of Bauhinia variegata Linn. leaf extracts in streptozotocin induced diabetes in Sprague Dawley rats. J Diabetes Metab Disord. 2021;20(2):1639–1645. doi:10.1007/s40200-021-00915-y
  • Suryavanshi SV, Barve K, Addepalli V, et al. Triphala churna-a traditional formulation in ayurveda mitigates diabetic neuropathy in rats. Front Pharmacol. 2021;12:662000. doi:10.3389/fphar.2021.662000
  • Areti A, Yerra VG, Naidu V, et al. Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol. 2014;2:289–295. doi:10.1016/j.redox.2014.01.006
  • Kawaguchi M, Satoh Y, Otsubo Y, et al. Molecular hydrogen attenuates neuropathic pain in mice. PLoS One. 2014;9:e100352. doi:10.1371/journal.pone.0100352
  • Yokota K, Fukuda M, Matsui Y, et al. Visit-to-visit variability of blood pressure and renal function decline in patients with diabetic chronic kidney disease. J Clin Hypertens. 2014;16:362–366. doi:10.1111/jch.12293
  • Bhowmik B, Siddiquee T, Mujumder A, et al. Serum lipid profile and its association with diabetes and prediabetes in a Rural Bangladeshi population. Int J Environ Res Public Health. 2018;15(9):1944. doi:10.3390/ijerph15091944
  • Hashiesh HM, Meeran MFN, Sharma C, Sadek B, Kaabi JA, Ojha SK. Therapeutic potential of β-caryophyllene: a dietary cannabinoid in diabetes and associated complications. Nutrients. 2020;12:2963. doi:10.3390/nu12102963
  • Suijun W, Zhen Y, Ying G, et al. A role for trans-caryophyllene in the moderation of insulin secretion. Biochem Biophys Res Commun. 2014;444:451–454. doi:10.1016/j.bbrc.2013.11.136
  • Uddin N, Hasan MR, Hossain MM, et al. In vitro α–amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pac J Trop Biomed. 2014;4:473–479. doi:10.12980/APJTB.4.2014C1173
  • Aguilar-Ávila D, Flores Soto M, Tapia-Vázquez C, et al. β -caryophyllene, a natural sesquiterpene, attenuates neuropathic pain and depressive-like behavior in experimental diabetic mice. J Med Food. 2019;22:460–468. doi:10.1089/jmf.2018.0157