409
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease

, &
Pages 2003-2030 | Published online: 08 Jul 2022

References

  • Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–922. doi:10.1038/s41591-018-0104-9
  • Wong VW, Wong GL, Choi PC, et al. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59(7):969–974. doi:10.1136/gut.2009.205088
  • Adams LA, Sanderson S, Lindor KD, et al. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J Hepatol. 2005;42(1):132–138. doi:10.1016/j.jhep.2004.09.012
  • Harrison SA, Torgerson S, Hayashi PH. The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am J Gastroenterol. 2003;98(9):2042–2047. doi:10.1111/j.1572-0241.2003.07659.x
  • Evans CD, Oien KA, MacSween RN, et al. Non-alcoholic steatohepatitis: a common cause of progressive chronic liver injury?. J Clin Pathol. 2002;55(9):689–692. doi:10.1136/jcp.55.9.689
  • Fassio E, Alvarez E, Domínguez N, et al. Natural history of nonalcoholic steatohepatitis: a longitudinal study of repeat liver biopsies. Hepatology. 2004;40(4):820–826. doi:10.1002/hep.20410
  • Hui AY, Wong VW, Chan HL, et al. Histological progression of non-alcoholic fatty liver disease in Chinese patients. Aliment Pharmacol Ther. 2005;21(4):407–413. doi:10.1111/j.1365-2036.2005.02334.x
  • Argo CK, Northup PG, Al-Osaimi AM, et al. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol. 2009;51(2):371–379. doi:10.1016/j.jhep.2009.03.019
  • Matteoni CA, Younossi ZM, Gramlich T, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–1419. doi:10.1016/s0016-5085(99)70506-8
  • Ekstedt M, Franzén LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44(4):865–873. doi:10.1002/hep.21327
  • McCullough AJ. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin Liver Dis. 2004;8(3):521–533. doi:10.1016/j.cld.2004.04.004
  • Önnerhag K, Nilsson PM, Lindgren S. Increased risk of cirrhosis and hepatocellular cancer during long-term follow-up of patients with biopsy-proven NAFLD. Scand J Gastroenterol. 2014;49(9):1111–1118. doi:10.3109/00365521.2014.934911
  • Cholankeril G, Patel R, Khurana S, et al. Hepatocellular carcinoma in non-alcoholic steatohepatitis: current knowledge and implications for management. World J Hepatol. 2017;9(11):533–543. doi:10.4254/wjh.v9.i11.533
  • Ganne-Carrié N, Chastang C, Chapel F, et al. Predictive score for the development of hepatocellular carcinoma and additional value of liver large cell dysplasia in Western patients with cirrhosis. Hepatology. 1996;23(5):1112–1118. doi:10.1002/hep.510230527
  • Trinchet JC, Bourcier V, Chaffaut C, et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort). Hepatology. 2015;62(3):737–750. doi:10.1002/hep.27743
  • White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol. 2012;10(12):1342–1359.e2. doi:10.1016/j.cgh.2012.10.001
  • Mantovani A, Scorletti E, Mosca A, et al. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 2020;111S:154170. doi:10.1016/j.metabol.2020.154170
  • Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi:10.1002/hep.28431
  • Zou B, Yeo YH, Nguyen VH, et al. Prevalence, characteristics and mortality outcomes of obese, nonobese and lean NAFLD in the United States, 1999–2016. J Intern Med. 2020;288(1):139–151. doi:10.1111/joim.13069
  • Le MH, Yeo YH, Cheung R, et al. Ethnic influence on nonalcoholic fatty liver disease prevalence and lack of disease awareness in the United States, 2011–2016. J Intern Med. 2020;287(6):711–722. doi:10.1111/joim.13035
  • Li J, Zou B, Yeo YH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2019;4(5):389–398. doi:10.1016/S2468-1253(19)30039-1
  • Sivell C. nonalcoholic fatty liver disease: a silent epidemic. Gastroenterol Nurs. 2019;42(5):428–434. doi:10.1097/SGA.0000000000000443
  • Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–1048. doi:10.1016/j.metabol.2015.12.012
  • Alkhalidy H, Moore W, Wang A, et al. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J Nutr Biochem. 2018;58:90–101. doi:10.1016/j.jnutbio.2018.04.014
  • Lordan R, Tsoupras A, Zabetakis I, et al. Forty years since the structural elucidation of platelet-activating factor (PAF): historical, current, and future research perspectives. Molecules. 2019;24(23):4414. doi:10.3390/molecules24234414
  • Oral A, Sahin T, Turker F, et al. Evaluation of plateletcrit and platelet distribution width in patients with non-alcoholic fatty liver disease: a retrospective chart review study. Med Sci Monit. 2019;25:9882–9886. doi:10.12659/MSM.920172
  • Ozhan H, Aydin M, Yazici M, et al. Mean platelet volume in patients with non-alcoholic fatty liver disease. Platelets. 2010;21(1):29–32. doi:10.3109/09537100903391023
  • Arslan N, Makay B. Mean platelet volume in obese adolescents with nonalcoholic fatty liver disease. J Pediatr Endocrinol Metab. 2010;23(8):807–813. doi:10.1515/jpem.2010.130
  • Malehmir M, Pfister D, Gallage S, et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med. 2019;25(4):641–655. doi:10.1038/s41591-019-0379-5
  • Jiang ZG, Feldbrügge L, Tapper EB, et al. Aspirin use is associated with lower indices of liver fibrosis among adults in the United States. Aliment Pharmacol Ther. 2016;43(6):734–743. doi:10.1111/apt.13515
  • Armstrong MJ, Rowe IA. Editorial: would an aspirin a day keep NAFLD and its complications away?. Aliment Pharmacol Ther. 2015;41(1):145. doi:10.1111/apt.12998
  • Shen H, Shahzad G, Jawairia M, et al. Association between aspirin use and the prevalence of nonalcoholic fatty liver disease: a cross-sectional study from the Third National Health and Nutrition Examination Survey. Aliment Pharmacol Ther. 2014;40(9):1066–1073. doi:10.1111/apt.12944
  • Simon TG, Henson J, Osganian S, et al. Daily aspirin use associated with reduced risk for fibrosis progression in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2019;17(13):2776–2784.e4. doi:10.1016/j.cgh.2019.04.061
  • Wang W, Chen J, Mao J, et al. Genistein Ameliorates Non-alcoholic Fatty Liver Disease by Targeting the Thromboxane A2 Pathway. J Agric Food Chem. 2018;66(23):5853–5859. doi:10.1021/acs.jafc.8b01691
  • Ford RJ, Fullerton MD, Pinkosky SL, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J. 2015;468(1):125–132. doi:10.1042/BJ20150125
  • Fujita K, Nozaki Y, Wada K, et al. Effectiveness of antiplatelet drugs against experimental non-alcoholic fatty liver disease. Gut. 2008;57(11):1583–1591. doi:10.1136/gut.2007.144550
  • Ibrahim M, Farghaly E, Gomaa W, et al. Nitro-aspirin is a potential therapy for non alcoholic fatty liver disease. Eur J Pharmacol. 2011;659(2–3):289–295. doi:10.1016/j.ejphar.2011.03.016
  • Kunz D, Gerard NP, Gerard C. The human leukocyte platelet-activating factor receptor. cDNA cloning, cell surface expression, and construction of a novel epitope-bearing analog. J Biol Chem. 1992;267(13):9101–9106.
  • Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev. 2000;80(4):1669–1699. doi:10.1152/physrev.2000.80.4.1669
  • Marrache AM, F G, Bernier SG, et al. Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor. J Immunol. 2002;169(11):6474–6481. doi:10.4049/jimmunol.169.11.6474
  • Greco NJ, Arnold JH, O’Dorisio TM, et al. Action of platelet-activating factor on type 1 diabetic human platelets. J Lab Clin Med. 1985;105(4):410–416.
  • O’Donnell MC, Henson PM, Fiedel BA. Activation of human platelets by platelet activating factor (PAF) derived from sensitized rabbit basophils. Immunology. 1978;35(6):953–958.
  • Murphy CT, Elmore M, Kellie S, et al. Comparison of the role of protein kinase C in platelet functional responses induced by three different mechanisms, PAF, ionomycin and arachidonic acid. Biochim Biophys Acta. 1991;1133:46–54.
  • Pédrono F, Cheminade C, Legrand AB. Natural 1-O-alkylglycerols reduce platelet-activating factor-induced release of [3H]-serotonin in rabbit platelets. Prostaglandins Leukot Essent Fatty Acids. 2004;71(1):19–23. doi:10.1016/j.plefa.2003.12.003
  • Brooks AC, Menzies-Gow NJ, Wheeler-Jones CP, et al. Regulation of platelet activating factor-induced equine platelet activation by intracellular kinases. J Vet Pharmacol Ther. 2009;32(2):189–196. doi:10.1111/j.1365-2885.2008.01020.x
  • Bailey SR, Andrews MJ, Elliott J, et al. Differential activation of platelets from normal and allergic ponies by PAF and ADP. Inflamm Res. 2000;49(5):224–230. doi:10.1007/s000110050583
  • El-Merahbi R, Löffler M, Mayer A, et al. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett. 2015;589(15):1728–1734. doi:10.1016/j.febslet.2015.05.054
  • Bajrangee A, Ryan N, Vangjeli C, et al. Impact of genetic variation in the 5-HT transporter and receptor on platelet function in patients with stable CAD taking aspirin. Thromb Res. 2016;146:51–55. doi:10.1016/j.thromres.2016.08.019
  • Qing P, Hao J, Xiquan K, et al.. The role of serotonin in concanavalin A-induced liver injury in mice. Oxid Med Cell Longev. 2020:7504521. doi:10.1155/2020/7504521
  • Lesurtel M, Soll C, Humar B, et al. Serotonin: a double-edged sword for the liver?. Surgeon. 2012;10(2):107–113. doi:10.1016/j.surge.2011.11.002
  • Choi WG, Choi W, Oh TJ, et al. Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity-related insulin resistance. J Clin Invest. 2021;131(23):e145331. doi:10.1172/JCI145331
  • Fu J, Li C, Zhang G, et al. Crucial roles of 5-HT and 5-HT2 receptor in diabetes-related lipid accumulation and pro-inflammatory cytokine generation in hepatocytes. Cell Physiol Biochem. 2018;48(6):2409–2428. doi:10.1159/000492656
  • Fu J, Ma S, Li X, et al. Long-term Stress with hyperglucocorticoidemia-induced hepatic steatosis with VLDL overproduction is dependent on both 5-HT2 receptor and 5-HT synthesis in liver. Int J Biol Sci. 2016;12(2):219–234. doi:10.7150/ijbs.13062
  • Lulu W, Xiangcheng F, Jichun H, et al. Gut-derived serotonin contributes to the progression of non-alcoholic steatohepatitis the liver HTR2A/PPARγ2 pathway. Front Pharmacol. 2020;11:553. doi:10.3389/fphar.2020.00553
  • Osawa Y, Kanamori H, Seki E, et al. L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J Biol Chem. 2011;286(40):34800–34808. doi:10.1074/jbc.M111.235473
  • Namkung J, Shong KE, Kim H, et al. Inhibition of serotonin synthesis induces negative hepatic lipid balance. Diabetes Metab J. 2018;42(3):233–243. doi:10.4093/dmj.2017.0084
  • Choi W, Namkung J, Hwang I, et al. Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nat Commun. 2018;9(1):4824. doi:10.1038/s41467-018-07287-7
  • Crane JD, Palanivel R, Mottillo EP, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med. 2015;21(2):166–172. doi:10.1038/nm.3766
  • Nocito A, Dahm F, Jochum W, et al. Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis. Gastroenterology. 2007;133(2):608–618. doi:10.1053/j.gastro.2007.05.019
  • Tintinger GR, Theron AJ, Steel HC, et al. Protein kinase C promotes restoration of calcium homeostasis to platelet activating factor-stimulated human neutrophils by inhibition of phospholipase C. J Inflamm. 2009;6:29. doi:10.1186/1476-9255-6-29
  • Sakon M, Kambayashi J. The regulatory mechanism of free Ca2+ concentration in activated platelets. Nihon Rinsho. 1992;50:249–253.
  • Yu P, Hatakeyama T, Aramoto H, et al. Mitogen-activated protein kinases regulate platelet-activating factor-induced hyperpermeability. Microcirculation. 2005;12(8):637–643. doi:10.1080/10739680500301706
  • Ng DS, Wong K. Platelet-activating factor (PAF) stimulates phosphatidylinositol hydrolysis in human peripheral blood mononuclear leukocytes. Res Commun Chem Pathol Pharmacol. 1989;66(2):219–231.
  • Abebe W, Ali N, Agrawal DK. Platelet-activating factor-induced inositol 1,4,5-trisphosphate generation in undifferentiated and differentiated U937 cells: role of tyrosine kinase. Int J Immunopharmacol. 1996;18(3):173–181. doi:10.1016/0192-0561(96)00004-5
  • Lin AY, Rui YC. Platelet-activating factor induced calcium mobilization and phosphoinositide metabolism in cultured bovine cerebral microvascular endothelial cells. Biochim Biophys Acta. 1994;1224(2):323–328. doi:10.1016/0167-4889(94)90206-2
  • Koike H, Imanishi N, Natsume Y, et al. Effects of platelet activating factor receptor antagonists on intracellular platelet activating factor function in neutrophils. Eur J Pharmacol. 1994;269(3):299–309. doi:10.1016/0922-4106(94)90037-x
  • Okayasu T, Hasegawa K, Ishibashi T. Platelet-activating factor stimulates metabolism of phosphoinositides via phospholipase A2 in primary cultured rat hepatocytes. J Lipid Res. 1987;28(7):760–767.
  • Chu WF, Sun HL, Dong DL, et al. Increasing Intracellular calcium of Guinea pig ventricular myocytes induced by platelet activating factor through IP3 pathway. Basic Clin Pharmacol Toxicol. 2006;98(1):104–109. doi:10.1111/j.1742-7843.2006.pto_313.x
  • Lautenschläger I, Wong YL, Sarau J, et al. Signalling mechanisms in PAF-induced intestinal failure. Sci Rep. 2017;7(1):13382. doi:10.1038/s41598-017-13850-x
  • Pedreño J, Hurt-Camejo E, Wiklund O, et al. Low-density lipoprotein (LDL) binds to a G-protein coupled receptor in human platelets. Evidence that the proaggregatory effect induced by LDL is modulated by down-regulation of binding sites and desensitization of its mediated signaling. Atherosclerosis. 2001;155(1):99–112. doi:10.1016/s0021-9150(00)00545-1
  • Raffaello A, Mammucari C, Gherardi G, et al. Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci. 2016;41(12):1035–1049. doi:10.1016/j.tibs.2016.09.001
  • Groenendyk J, Agellon LB, Michalak M. Calcium signaling and endoplasmic reticulum stress. Int Rev Cell Mol Biol. 2021;363:1–20. doi:10.1016/bs.ircmb.2021.03.003
  • Szabadkai G, Bianchi K, Várnai P, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175(6):901–911. doi:10.1083/jcb.200608073
  • Marchi S, Bittremieux M, Missiroli S, et al. Endoplasmic reticulum-mitochondria communication through Ca2+ signaling: the importance of mitochondria-associated membranes (MAMs). Adv Exp Med Biol. 2017;997:49–67. doi:10.1007/978-981-10-4567-7_4
  • Hirata K, Pusl T, O’Neill AF, et al. The type II inositol 1,4,5-trisphosphate receptor can trigger Ca2+ waves in rat hepatocytes. Gastroenterology. 2002;122(4):1088–1100. doi:10.1053/gast.2002.32363
  • Khamphaya T, Chukijrungroat N, Saengsirisuwan V, et al. Nonalcoholic fatty liver disease impairs expression of the type II inositol 1,4,5-trisphosphate receptor. Hepatology. 2018;67(2):560–574. doi:10.1002/hep.29588
  • Arruda AP, Pers BM, Parlakgül G, et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20(12):1427–1435. doi:10.1038/nm.3735
  • Feriod CN, Oliveira AG, Guerra MT, et al. Hepatic Inositol 1,4,5 Trisphosphate Receptor Type 1 Mediates Fatty Liver. Hepatol Commun. 2017;1(1):23–35. doi:10.1002/hep4.1012
  • Alzayady KJ, Wang L, Chandrasekhar R, et al. Defining the stoichiometry of inositol 1,4,5-trisphosphate binding required to initiate Ca2+ release. Sci Signal. 2016;9(422):ra35. doi:10.1126/scisignal.aad6281
  • Barritt GJ, Litjens TL, Castro J, et al. Store-operated Ca2+ channels and microdomains of Ca2+ in liver cells. Clin Exp Pharmacol Physiol. 2009;36(1):77–83. doi:10.1111/j.1440-1681.2008.05095.x
  • Ong HL, Ambudkar IS. STIM-TRP pathways and microdomain organization: contribution of TRPC1 in store-operated Ca2+ entry: impact on Ca2+ signaling and cell function. Adv Exp Med Biol. 2017;993:159–188. doi:10.1007/978-3-319-57732-6_9
  • Thillaiappan NB, Chakraborty P, Hasan G, et al. IP3 receptors and Ca2+ entry. Biochim Biophys Acta Mol Cell Res. 2019;1866(7):1092–1100. doi:10.1016/j.bbamcr.2018.11.007
  • Zhang L, Zhang Y, Jiang Y, et al. Upregulated SOCC and IP3R calcium channels and subsequent elevated cytoplasmic calcium signaling promote nonalcoholic fatty liver disease by inhibiting autophagy. Mol Cell Biochem. 2021;476(8):3163–3175. doi:10.1007/s11010-021-04150-0
  • Hammadi M, Oulidi A, Gackière F, et al. Modulation of ER stress and apoptosis by endoplasmic reticulum calcium leak via translocon during unfolded protein response: involvement of GRP78. FASEB J. 2013;27(4):1600–1609. doi:10.1096/fj.12-218875
  • Lai S, Li Y, Kuang Y, et al. PKCδ silencing alleviates saturated fatty acid induced ER stress by enhancing SERCA activity. Biosci Rep. 2017;37(6):BSR20170869. doi:10.1042/BSR20170869
  • Zhang J, Li Y, Jiang S, et al. Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis. Am J Physiol Cell Physiol. 2014;306(3):C279–C290. doi:10.1152/ajpcell.00117.2013
  • Zeeshan HM, Lee GH, Kim HR, et al. Endoplasmic reticulum stress and associated ROS. Int J Mol Sci. 2016;17(3):327. doi:10.3390/ijms17030327
  • Lebeaupin C, Vallée D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69(4):927–947. doi:10.1016/j.jhep.2018.06.008
  • Vallée D, Blanc M, Lebeaupin C, et al. La réponse au stress du réticulum endoplasmique dans la physiopathologie des maladies chroniques du foie [Endoplasmic reticulum stress response and pathogenesis of non-alcoholic steatohepatitis]. Med Sci. 2020;36(2):119–129. doi:10.1051/medsci/2020008
  • Zhang J, Zhang K, Li Z, et al. ER stress-induced inflammasome activation contributes to hepatic inflammation and steatosis. J Clin Cell Immunol. 2016;7(5):457. doi:10.4172/2155-9899.1000457
  • Xu Y, Yang C, Zhang S, et al. Ginsenoside Rg1 protects against non-alcoholic fatty liver disease by ameliorating lipid peroxidation, endoplasmic reticulum stress, and inflammasome activation. Biol Pharm Bull. 2018;41(11):1638–1644. doi:10.1248/bpb.b18-00132
  • Ye L, Zhao D, Xu Y, et al. LncRNA-Gm9795 promotes inflammation in non-alcoholic steatohepatitis via NF-[Formula: see text]B/JNK pathway by endoplasmic reticulum stress. J Transl Med. 2021;19(1):101. doi:10.1186/s12967-021-02769-7
  • Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457–461. doi:10.1126/science.1103160
  • Murakami M, Kudo I. Phospholipase A2. J Biochem. 2002;131(3):285–292. doi:10.1093/oxfordjournals.jbchem.a003101
  • Catalán RE, Martínez AM, Aragonés MD, et al. PAF and thrombin actions in platelets are selectively affected by a new 1,4-dihydropyridine derivative. J Biochem. 1993;113(4):450–455. doi:10.1093/oxfordjournals.jbchem.a124065
  • Oestvang J, Anthonsen MW, Johansen B. LysoPC and PAF trigger arachidonic acid release by divergent signaling mechanisms in monocytes. J Lipids. 2011;2011:532145. doi:10.1155/2011/532145
  • Hurst JS, Bazan HE. Platelet-activating factor preferentially stimulates the phospholipase A2/cyclooxygenase cascade in the rabbit cornea. Curr Eye Res. 1995;14(9):769–775. doi:10.3109/02713689508995798
  • Svetlov SI, Howard KM, Miwa M, et al. Interaction of platelet-activating factor with rat hepatocytes: uptake, translocation, metabolism, and effects on PAF-acetylhydrolase secretion and protein tyrosine phosphorylation. Arch Biochem Biophys. 1996;327(1):113–122. doi:10.1006/abbi.1996.0099
  • Burns JL, Nakamura MT, Ma DWL. Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot Essent Fatty Acids. 2018;135:1–4. doi:10.1016/j.plefa.2018.05.004
  • Sonnweber T, Pizzini A, Nairz M, et al. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int J Mol Sci. 2018;19(11):3285. doi:10.3390/ijms19113285
  • Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41–48. doi:10.1016/j.plefa.2018.03.004
  • Di Nunzio M, Valli V, Bordoni A. PUFA and oxidative stress. Differential modulation of the cell response by DHA. Int J Food Sci Nutr. 2016;67(7):834–843. doi:10.1080/09637486.2016.1201790
  • Samala N, Tersey SA, Chalasani N, et al. Molecular mechanisms of nonalcoholic fatty liver disease: potential role for 12-lipoxygenase. J Diabetes Complications. 2017;31(11):1630–1637. doi:10.1016/j.jdiacomp.2017.07.014
  • Garrido D, Chanteloup NK, Trotereau A, et al. Characterization of the phospholipid platelet-activating factor as a mediator of inflammation in chickens. Front Vet Sci. 2017;4:226. doi:10.3389/fvets.2017.00226
  • Dalmaso B, da Silva-Junior IA, Fragel-Madeira L, et al. Platelet activating factor in the eye: physiological roles, diseases and future perspectives. Prostaglandins Other Lipid Mediat. 2021;153:106522. doi:10.1016/j.prostaglandins.2020.106522
  • Evans JH, Spencer DM, Zweifach A, et al. Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J Biol Chem. 2001;276(32):30150–30160. doi:10.1074/jbc.M100943200
  • Six DA, Dennis EA. Essential Ca(2+)-independent role of the group IVA cytosolic phospholipase A(2) C2 domain for interfacial activity. J Biol Chem. 2003;278(26):23842–23850. doi:10.1074/jbc.M301386200
  • Singh MK, Jayarajan R, Varshney S, et al. Chronic systemic exposure to IL6 leads to deregulation of glycolysis and fat accumulation in the zebrafish liver. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(5):158905. doi:10.1016/j.bbalip.2021.158905
  • Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev. 2010;11(6):430–445. doi:10.1111/j.1467-789X.2009.00657.x
  • Colak Y, Senates E, Ozturk O, et al. Association of serum lipoprotein-associated phospholipase A2 level with nonalcoholic fatty liver disease. Metab Syndr Relat Disord. 2012;10(2):103–109. doi:10.1089/met.2011.0111
  • Zelber-Sagi S, Azar S, Nemirovski A, et al. Serum levels of endocannabinoids are independently associated with nonalcoholic fatty liver disease. Obesity. 2017;25(1):94–101. doi:10.1002/oby.21687
  • Tutino V, De Nunzio V, Caruso MG, et al. Aerobic physical activity and a low glycemic diet reduce the AA/EPA ratio in red blood cell membranes of patients with NAFLD. Nutrients. 2018;10(9):1299. doi:10.3390/nu10091299
  • Ii H, Yokoyama N, Yoshida S, et al. Alleviation of high-fat diet-induced fatty liver damage in group IVA phospholipase A2-knockout mice. PLoS One. 2009;4(12):e8089. doi:10.1371/journal.pone.0008089
  • Sztolsztener K, Chabowski A, Harasim-Symbor E, et al. Arachidonic acid as an early indicator of inflammation during non-alcoholic fatty liver disease development. Biomolecules. 2020;10(8):1133. doi:10.3390/biom10081133
  • Ma K, Chen Y, Liang X, et al. Inhibition of 5-lipoxygenase inhibitor zileuton in high-fat diet-induced nonalcoholic fatty liver disease progression model. Iran J Basic Med Sci. 2017;20(11):1207–1212. doi:10.22038/IJBMS.2017.9482
  • Ghazali R, Mehta KJ, Bligh SA, et al. High omega arachidonic acid/docosahexaenoic acid ratio induces mitochondrial dysfunction and altered lipid metabolism in human hepatoma cells. World J Hepatol. 2020;12(3):84–98. doi:10.4254/wjh.v12.i3.84
  • Fiorio Pla A, Genova T, Pupo E, et al. Multiple roles of protein kinase a in arachidonic acid-mediated Ca2+ entry and tumor-derived human endothelial cell migration. Mol Cancer Res. 2010;8(11):1466–1476. doi:10.1158/1541-7786.MCR-10-0002
  • Thompson J, Mignen O, Shuttleworth TJ. The N-terminal domain of Orai3 determines selectivity for activation of the store-independent ARC channel by arachidonic acid. Channels. 2010;4(5):398–410. doi:10.4161/chan.4.5.13226
  • Tseng CL, Wei JW. Homologous desensitization of histamine-mediated signal transduction system in C6 glioma cells. Chin J Physiol. 2013;56(2):90–100. doi:10.4077/CJP.2013.BAB094
  • Martínez J, Moreno JJ. Role of Ca2+-independent phospholipase A2 on arachidonic acid release induced by reactive oxygen species. Arch Biochem Biophys. 2001;392(2):257–262. doi:10.1006/abbi.2001.2439
  • Nunemaker CS, Chen M, Pei H, et al. 12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by Western diet. Am J Physiol Endocrinol Metab. 2008;295(5):E1065–E1075. doi:10.1152/ajpendo.90371.2008
  • Lazic M, Inzaugarat ME, Povero D, et al. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis. PLoS One. 2014;9(9):e107658. doi:10.1371/journal.pone.0107658
  • Martínez-Clemente M, Ferré N, González-Périz A, et al. 5-lipoxygenase deficiency reduces hepatic inflammation and tumor necrosis factor alpha-induced hepatocyte damage in hyperlipidemia-prone ApoE-null mice. Hepatology. 2010;51(3):817–827. doi:10.1002/hep.23463
  • Puri P, Wiest MM, Cheung O, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50(6):1827–1838. doi:10.1002/hep.23229
  • Hall Z, Bond NJ, Ashmore T, et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology. 2017;65(4):1165–1180. doi:10.1002/hep.28953
  • Ma K, Nunemaker CS, Wu R, et al. 12-lipoxygenase products reduce insulin secretion and {beta}-cell viability in human islets. J Clin Endocrinol Metab. 2010;95(2):887–893. doi:10.1210/jc.2009-1102
  • Chakrabarti SK, Cole BK, Wen Y, Keller SR, Nadler JL. 12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes. Obesity. 2009;17(9):1657–1663. doi:10.1038/oby.2009.192
  • Khan H, Gupta A, Singh TG, et al. Mechanistic insight on the role of leukotriene receptors in ischemic-reperfusion injury. Pharmacol Rep. 2021;73(5):1240–1254. doi:10.1007/s43440-021-00258-8
  • Lecomte M, Lecocq R, Dumont JE, et al. Covalent binding of arachidonic acid metabolites to human platelet proteins. Identification of prostaglandin H synthase as one of the modified substrates. J Biol Chem. 1990;265(9):5178–5187.
  • Otomo Y, Kanda Y, Yoshino Y, Otsuka T. Production of leukotrienes in rat Kupffer cells and hepatocytes by various inducers. Nihon Geka Gakkai Zasshi. 1993;94(3):234–241.
  • Doskey CM, Fader KA, Nault R, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters hepatic polyunsaturated fatty acid metabolism and eicosanoid biosynthesis in female Sprague-Dawley rats. Toxicol Appl Pharmacol. 2020;398:115034. doi:10.1016/j.taap.2020.115034
  • Takasugi M, Muta E, Yamada K, et al. A new method to evaluate anti-allergic effect of food component by measuring leukotriene B4 from a mouse mast cell line. Cytotechnology. 2018;70(1):177–184. doi:10.1007/s10616-017-0129-9
  • Ito S, Ito Y, Katagiri H, et al. Leukotriene B4/leukotriene B4 receptor pathway is involved in hepatic microcirculatory dysfunction elicited by endotoxin. Shock. 2008;30(1):87–91. doi:10.1097/shk.0b013e31815d06a1
  • Alvarez ML, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol. 2021;192:114732. doi:10.1016/j.bcp.2021.114732
  • Gong M, Duan H, Wu F, et al. Berberine alleviates insulin resistance and inflammation via inhibiting the LTB4-BLT1 axis. Front Pharmacol. 2021;12:722360. doi:10.3389/fphar.2021.722360
  • Gai Z, Visentin M, Gui T, et al. Effects of farnesoid X receptor activation on arachidonic acid metabolism, NF-kB signaling, and hepatic inflammation. Mol Pharmacol. 2018;94(2):802–811. doi:10.1124/mol.117.111047
  • López-Parra M, Titos E, Horrillo R, et al. Regulatory effects of arachidonate 5-lipoxygenase on hepatic microsomal TG transfer protein activity and VLDL-triglyceride and apoB secretion in obese mice. J Lipid Res. 2008;49(12):2513–2523. doi:10.1194/jlr.M800101-JLR200
  • Horrillo R, González-Périz A, Martínez-Clemente M, et al. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J Immunol. 2010;184(7):3978–3987. doi:10.4049/jimmunol.0901355
  • Bäck M, Sultan A, Ovchinnikova O, et al. 5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation. Circ Res. 2007;100(7):946–949. doi:10.1161/01.RES.0000264498.60702.0d
  • Gilbert NC, Gerstmeier J, Schexnaydre EE, et al. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat Chem Biol. 2020;16(7):783–790. doi:10.1038/s41589-020-0544-7
  • Chakrabarti SK, Wen Y, Dobrian AD, et al. Evidence for activation of inflammatory lipoxygenase pathways in visceral adipose tissue of obese Zucker rats. Am J Physiol Endocrinol Metab. 2011;300(1):E175–E187. doi:10.1152/ajpendo.00203.2010
  • Spite M, Hellmann J, Tang Y, et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J Immunol. 2011;187(4):1942–1949. doi:10.4049/jimmunol.1100196
  • Abdallah MS, Eldeen AH, Tantawy SS, et al. The leukotriene receptor antagonist montelukast in the treatment of non-alcoholic steatohepatitis: a proof-of-concept, randomized, double-blind, placebo-controlled trial. Eur J Pharmacol. 2021;906:174295. doi:10.1016/j.ejphar.2021.174295
  • Beara I, Majkić T, Fioravanti S, et al. The effects of trifluoromethylated derivatives on prostaglandin E2 and thromboxane A2 production in human leukemic U937 macrophages. Med Chem. 2020;16(1):63–68. doi:10.2174/1573406415666190208150253
  • Son DJ, Cho MR, Jin YR, et al. Antiplatelet effect of green tea catechins: a possible mechanism through arachidonic acid pathway. Prostaglandins Leukot Essent Fatty Acids. 2004;71(1):25–31. doi:10.1016/j.plefa.2003.12.004
  • Srivastava KC. Transformations of exogenous arachidonic acid in human platelets in the presence of oleic- and eicosapentaenoic acids. Prostaglandins Leukot Med. 1985;18(1):31–37. doi:10.1016/0262-1746(85)90047-2
  • Levine L. Platelet-activating factor stimulates arachidonic acid metabolism in rat liver cells (C-9 cell line) by a receptor-mediated mechanism. Mol Pharmacol. 1988;34(6):793–799.
  • Levine L. Effects of the protein kinase inhibitors, staurosporine and K-252a, on PGI2 production by rat liver cells (the C-9 cell line). Prostaglandins. 1990;40(3):259–269. doi:10.1016/0090-6980(90)90014-m
  • López-Parra M, Clària J, Titos E, et al. The selective cyclooxygenase-2 inhibitor celecoxib modulates the formation of vasoconstrictor eicosanoids and activates PPARgamma. Influence of Albumin J Hepatol. 2005;42(1):75–81. doi:10.1016/j.jhep.2004.09.011
  • Becker K, Heinroth-Hoffmann I, Giessler C, et al. PAF effects on eicosanoid release in neonatal rat cardiomyocytes. Prostaglandins Leukot Essent Fatty Acids. 1995;53(3):197–200. doi:10.1016/0952-3278(95)90116-7
  • Lo HM, Huang TF, Lin CN, et al. 2’-Ethoxy-5’-methoxy-2-(5-methylthienyl)chalcone inhibits collagen-induced protein tyrosine phosphorylation and thromboxane formation during platelet aggregation and adhesion. Pharmacology. 2009;84(3):145–152. doi:10.1159/000235584
  • Wang W, Zhong X, Guo J. Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review). Int J Mol Med. 2021;47(6):114. doi:10.3892/ijmm.2021.4947
  • Jiang J, Tran L, Vasudevan H, et al. Endothelin-1 blockade prevents COX2 induction and TXA2 production in the fructose hypertensive rat. Can J Physiol Pharmacol. 2007;85(3–4):422–429. doi:10.1139/y06-088
  • Rucker D, Dhamoon AS. Physiology, thromboxane A2. StatPearls; 2021.
  • Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294(5548):1871–1875. doi:10.1126/science.294.5548.1871
  • Tipoe GL, Ho CT, Liong EC, et al. Voluntary oral feeding of rats not requiring a very high fat diet is a clinically relevant animal model of non-alcoholic fatty liver disease (NAFLD). Histol Histopathol. 2009;24(9):1161–1169. doi:10.14670/HH-24.1161
  • Hybiak J, Broniarek I, Kiryczyński G, et al. Aspirin and its pleiotropic application. Eur J Pharmacol. 2020;866:172762. doi:10.1016/j.ejphar.2019.172762
  • Pérez S, Aspichueta P, Ochoa B, et al. The 2-series prostaglandins suppress VLDL secretion in an inflammatory condition-dependent manner in primary rat hepatocytes. Biochim Biophys Acta. 2006;1761(2):160–171. doi:10.1016/j.bbalip.2006.02.003
  • Feingold KR, Doerrler W, Dinarello CA, et al. Stimulation of lipolysis in cultured fat cells by tumor necrosis factor, interleukin-1, and the interferons is blocked by inhibition of prostaglandin synthesis. Endocrinology. 1992;130(1):10–16. doi:10.1210/endo.130.1.1370149
  • Henkel J, Frede K, Schanze N, et al. Stimulation of fat accumulation in hepatocytes by PGE-dependent repression of hepatic lipolysis, β-oxidation and VLDL-synthesis. Lab Invest. 2012;92(11):1597–1606. doi:10.1038/labinvest.2012.128
  • Nassir F, Adewole OL, Brunt EM, et al. CD36 deletion reduces VLDL secretion, modulates liver prostaglandins, and exacerbates hepatic steatosis in ob/ob mice. J Lipid Res. 2013;54(11):2988–2997. doi:10.1194/jlr.M037812
  • Henkel J, Coleman CD, Schraplau A, et al. Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model. Sci Rep. 2018;8(1):16127. doi:10.1038/s41598-018-34633-y
  • Loomba R, Quehenberger O, Armando A, et al. Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J Lipid Res. 2015;56(1):185–192. doi:10.1194/jlr.P055640
  • Kus E, Kaczara P, Czyzynska-Cichon I, et al. LSEC fenestrae are preserved despite pro-inflammatory phenotype of liver sinusoidal endothelial cells in mice on high fat diet. Front Physiol. 2019;10:6. doi:10.3389/fphys.2019.00006
  • Kumei S, Yuhki KI, Kojima F, et al. Prostaglandin I2 suppresses the development of diet-induced nonalcoholic steatohepatitis in mice. FASEB J. 2018;32(5):2354–2365. doi:10.1096/fj.201700590R
  • Chung MY, Mah E, Masterjohn C, et al. Green tea lowers hepatic COX-2 and prostaglandin E2 in rats with dietary fat-induced nonalcoholic steatohepatitis. J Med Food. 2015;18(6):648–655. doi:10.1089/jmf.2014.0048
  • Helmersson J, Vessby B, Larsson A, et al. Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation. 2004;109(14):1729–1734. doi:10.1161/01.CIR.0000124718.99562.91
  • Kimple ME, Keller MP, Rabaglia MR, et al. Prostaglandin E2 receptor, EP3, is induced in diabetic islets and negatively regulates glucose- and hormone-stimulated insulin secretion. Diabetes. 2013;62(6):1904–1912. doi:10.2337/db12-0769
  • Batchu SN, Majumder S, Bowskill BB, et al. Prostaglandin I2 receptor agonism preserves β-cell function and attenuates albuminuria through nephrin-dependent mechanisms. Diabetes. 2016;65(5):1398–1409. doi:10.2337/db15-0783
  • Arablou T, Aryaeian N, Valizadeh M, et al. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr. 2014;65(4):515–520. doi:10.3109/09637486.2014.880671
  • Zhu CF, Li GZ, Peng HB, et al. Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl Physiol Nutr Metab. 2010;35(6):797–804. doi:10.1139/H10-075
  • Francés DE, Motiño O, Agrá N, et al. Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance. Diabetes. 2015;64(5):1522–1531. doi:10.2337/db14-0979
  • Hsieh PS, Jin JS, Chiang CF, et al. COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity. 2009;17(6):1150–1157. doi:10.1038/oby.2008.674
  • Henkel J, Neuschäfer-Rube F, Pathe-neuschäfer-rube A, et al. Aggravation by prostaglandin E2 of interleukin-6-dependent insulin resistance in hepatocytes. Hepatology. 2009;50(3):781–790. doi:10.1002/hep.23064
  • Henkel J, Gärtner D, Dorn C, et al. Oncostatin M produced in Kupffer cells in response to PGE2: possible contributor to hepatic insulin resistance and steatosis. Lab Invest. 2011;91(7):1107–1117. doi:10.1038/labinvest.2011.47
  • Wang Y, Yan S, Xiao B, et al. Prostaglandin F2α facilitates hepatic glucose production through camkiiγ/p38/FOXO1 signaling pathway in fasting and obesity. Diabetes. 2018;67(9):1748–1760. doi:10.2337/db17-1521
  • Sato N, Kaneko M, Tamura M, et al. The prostacyclin analog beraprost sodium ameliorates characteristics of metabolic syndrome in obese Zucker (fatty) rats. Diabetes. 2010;59(4):1092–1100. doi:10.2337/db09-1432
  • Ryu R, Kim HJ, Moon B, et al. Ethanol extract of persimmon tree leaves improves blood circulation and lipid metabolism in rats fed a high-fat diet. J Med Food. 2015;18(7):715–723. doi:10.1089/jmf.2014.3307
  • Francque S, Laleman W, Verbeke L, et al. Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture. Lab Invest. 2012;92(10):1428–1439. doi:10.1038/labinvest.2012.103
  • Nieuwenhuys CM, Feijge MA, Offermans RF, et al. Modulation of rat platelet activation by vessel wall-derived prostaglandin and platelet-derived thromboxane: effects of dietary fish oil on thromboxane-prostaglandin balance. Atherosclerosis. 2001;154(2):355–366. doi:10.1016/s0021-9150(00)00503-7
  • Murphy CT, Elmore M, Kellie S, et al. The relationship between cytosolic Ca2+, sn-1,2-diacylglycerol and inositol 1,4,5-trisphosphate elevation in platelet-activating-factor-stimulated rabbit platelets. Influence of protein kinase C on production of signal molecules. Biochem J. 1991;278(1):255–261. doi:10.1042/bj2780255
  • Catalán RE, Martínez AM, Aragonés MD, et al. PAF-induced activation of polyphosphoinositide-hydrolyzing phospholipase C in cerebral cortex. Biochem Biophys Res Commun. 1992;183(1):300–305. doi:10.1016/0006-291x(92)91643-5
  • Kester M, Thomas CP, Wang J, et al. Platelet-activating factor stimulates multiple signaling pathways in cultured rat mesangial cells. J Cell Physiol. 1992;153(2):244–255. doi:10.1002/jcp.1041530204
  • Uhing RJ, Prpic V, Hollenbach PW, et al. Involvement of protein kinase C in platelet-activating factor-stimulated diacylglycerol accumulation in murine peritoneal macrophages. J Biol Chem. 1989;264(16):9224–9230.
  • Miguel BG, Calcerrada MC, Martín L, et al. Increase of phosphoinositide hydrolysis and diacylglycerol production by PAF in isolated rat liver nuclei. Prostaglandins Other Lipid Mediat. 2001;65(4):159–166. doi:10.1016/s0090-6980(01)00124-1
  • Kojta I, Zabielski P, Roszczyc-Owsiejczuk K, et al. GPAT gene silencing in muscle reduces diacylglycerols content and improves insulin action in diet-induced insulin resistance. Int J Mol Sci. 2020;21(19):7369. doi:10.3390/ijms21197369
  • Preuss C, Jelenik T, Bódis K, et al. A new targeted lipidomics approach reveals lipid droplets in liver, muscle and heart as a repository for diacylglycerol and ceramide species in non-alcoholic fatty liver. Cells. 2019;8(3):277. doi:10.3390/cells8030277
  • Engin AB. What Is Lipotoxicity?. Adv Exp Med Biol. 2017;960:197–220. doi:10.1007/978-3-319-48382-5_8
  • Gorden DL, Ivanova PT, Myers DS, et al. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS One. 2011;6(8):e22775. doi:10.1371/journal.pone.0022775
  • Sanyal AJ, Pacana T. A lipidomic readout of disease progression in A diet-induced mouse model of nonalcoholic fatty liver disease. Trans Am Clin Climatol Assoc. 2015;126:271–288.
  • Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat Med. 2010;16(4):400–402. doi:10.1038/nm0410-400
  • Gilijamse PW, Versteeg RI, Ackermans MT, et al. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 2017;19(10):1997–2004. doi:10.1016/j.celrep.2017.05.035
  • Yazıcı D, Sezer H. Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol. 2017;960:277–304. doi:10.1007/978-3-319-48382-5_12
  • Magkos F, Su X, Bradley D, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology. 2012;142(7):1444–6.e2. doi:10.1053/j.gastro.2012.03.003
  • Toulis KA, Nirantharakumar K, Pourzitaki C, et al. Glucokinase activators for type 2 diabetes: challenges and future developments. Drugs. 2020;80(5):467–475. doi:10.1007/s40265-020-01278-z
  • Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys. 2019;663:199–213. doi:10.1016/j.abb.2019.01.011
  • Blackmore PF, Strickland WG, Bocckino SB, et al. Mechanism of hepatic glycogen synthase inactivation induced by Ca2+-mobilizing hormones. Studies using phospholipase C and phorbol myristate acetate. Biochem J. 1986;237(1):235–242. doi:10.1042/bj2370235
  • Hage hassan R, Bourron O, Hajduch E. Defect of insulin signal in peripheral tissues: important role of ceramide. World J Diabetes. 2014;5(3):244–257. doi:10.4239/wjd.v5.i3.244
  • Titchenell PM, Lazar MA, Birnbaum MJ. Unraveling the regulation of hepatic metabolism by insulin. Trends Endocrinol Metab. 2017;28(7):497–505. doi:10.1016/j.tem.2017.03.003
  • Lewis GF, Carpentier AC, Pereira S, et al. Direct and indirect control of hepatic glucose production by insulin. Cell Metab. 2021;33(4):709–720. doi:10.1016/j.cmet.2021.03.007
  • Lyu K, Zhang Y, Zhang D, et al. A membrane-bound diacylglycerol species induces PKCϵ-mediated hepatic insulin resistance. Cell Metab. 2020;32(4):654–664.e5. doi:10.1016/j.cmet.2020.08.001
  • Aroor AR, Habibi J, Ford DA, et al. Dipeptidyl peptidase-4 inhibition ameliorates Western diet-induced hepatic steatosis and insulin resistance through hepatic lipid remodeling and modulation of hepatic mitochondrial function. Diabetes. 2015;64(6):1988–2001. doi:10.2337/db14-0804
  • Li X, Zhang D, Vatner DF, et al. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc Natl Acad Sci U S A. 2020;117(51):32584–32593. doi:10.1073/pnas.1922169117
  • Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59(2):713–723. doi:10.1002/hep.26672
  • Kumashiro N, Erion DM, Zhang D, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011;108(39):16381–16385. doi:10.1073/pnas.1113359108
  • Zimmerman GA, McIntyre TM, Prescott SM, et al. The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med. 2002;30(5 Suppl):S294–S301. doi:10.1097/00003246-200205001-00020
  • Zaid Y, Senhaji N, Darif Y, et al. Distinctive roles of PKC delta isozyme in platelet function. Curr Res Transl Med. 2016;64(3):135–139. doi:10.1016/j.retram.2016.05.001
  • Pelech SL, Charest DL, Howard SL, et al. Protein kinase C activation by platelet-activating factor is independent of enzyme translocation. Biochim Biophys Acta. 1990;1051(1):100–107. doi:10.1016/0167-4889(90)90179-h
  • Gay JC, Stitt ES. Platelet-activating factor induces protein kinase activity in the particulate fraction of human neutrophils. Blood. 1988;71(1):159–165.
  • Hu H, Zhang W, Li N. Glycoprotein IIb/IIIa inhibition attenuates platelet-activating factor-induced platelet activation by reducing protein kinase C activity. J Thromb Haemost. 2003;1(8):1805–1812. doi:10.1046/j.1538-7836.2003.00324.x
  • Guo X, Zheng M, Pan R, et al. Hydroxysafflor yellow A (HSYA) targets the platelet-activating factor (PAF) receptor and inhibits human bronchial smooth muscle activation induced by PAF. Food Funct. 2019;10(8):4661–4673. doi:10.1039/c9fo00896a
  • Baudel MAS M-A, Shi J, Large WA, et al. Obligatory role for PKCδ in PIP2 -mediated activation of store-operated TRPC1 channels in vascular smooth muscle cells. J Physiol. 2020;598(18):3911–3925. doi:10.1113/JP279947
  • Sharma A, Maurya CK, Arha D, et al. Nod1-mediated lipolysis promotes diacylglycerol accumulation and successive inflammation via PKCδ-IRAK axis in adipocytes. Biochim Biophys Acta Mol Basis Dis. 2019;1865(1):136–146. doi:10.1016/j.bbadis.2018.10.036
  • Balciunaite E, Jones S, Toker A, et al. PDGF initiates two distinct phases of protein kinase C activity that make unequal contributions to the G0 to S transition. Curr Biol. 2000;10(5):261–267. doi:10.1016/s0960-9822(00)00358-4
  • Li M, Vienberg SG, Bezy O, et al. Role of PKCδ in insulin sensitivity and skeletal muscle metabolism. Diabetes. 2015;64(12):4023–4032. doi:10.2337/db14-1891
  • Morgan S, Yamanouchi D, Harberg C, et al. Elevated protein kinase C-δ contributes to aneurysm pathogenesis through stimulation of apoptosis and inflammatory signaling. Arterioscler Thromb Vasc Biol. 2012;32(10):2493–2502. doi:10.1161/ATVBAHA.112.255661
  • Lyu K, Zhang D, Song J, et al. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol/PKCε/insulin receptor Thr1160 phosphorylation. JCI Insight. 2021;6(4):e139946. doi:10.1172/jci.insight.139946
  • Malavez Y, Voss OH, Gonzalez-Mejia ME, et al. Distinct contribution of protein kinase Cδ and protein kinase Cε in the lifespan and immune response of human blood monocyte subpopulations. Immunology. 2015;144(4):611–620. doi:10.1111/imm.12412
  • Greene MW, Burrington CM, Luo Y, et al. PKCδ is activated in the liver of obese Zucker rats and mediates diet-induced whole body insulin resistance and hepatocyte cellular insulin resistance. J Nutr Biochem. 2014;25(3):281–288. doi:10.1016/j.jnutbio.2013.10.008
  • Newton AC. Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab. 2010;298(3):E395–E402. doi:10.1152/ajpendo.00477.2009
  • Giorgione JR, Lin JH, McCammon JA, et al. Increased membrane affinity of the C1 domain of protein kinase Cdelta compensates for the lack of involvement of its C2 domain in membrane recruitment. J Biol Chem. 2006;281(3):1660–1669. doi:10.1074/jbc.M510251200
  • Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–32353. doi:10.1074/jbc.M313478200
  • Lee SJ, Kang JH, Choi SY, et al. PKCδ as a regulator for TGFβ1-induced α-SMA production in a murine nonalcoholic steatohepatitis model. PLoS One. 2013;8(2):e55979. doi:10.1371/journal.pone.0055979
  • Badi RM, Mostafa DG, Khaleel EF, et al. Resveratrol protects against hepatic insulin resistance in a rat’s model of non-alcoholic fatty liver disease by down-regulation of GPAT-1 and DGAT2 expression and inhibition of PKC membranous translocation. Clin Exp Pharmacol Physiol. 2019;46(6):545–555. doi:10.1111/1440-1681.13074
  • Samidurai M, Palanisamy BN, Bargues-Carot A, et al. PKC Delta Activation Promotes Endoplasmic Reticulum Stress (ERS) and NLR Family Pyrin Domain-Containing 3 (NLRP3) Inflammasome Activation Subsequent to Asynuclein-Induced Microglial Activation: involvement of Thioredoxin-Interacting Protein (TXNIP)/Thioredoxin (Trx) Redoxisome Pathway. Front Aging Neurosci. 2021;13:661505. doi:10.3389/fnagi.2021.661505
  • Jornayvaz FR, Birkenfeld AL, Jurczak MJ, et al. Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2. Proc Natl Acad Sci U S A. 2011;108(14):5748–5752. doi:10.1073/pnas.1103451108
  • Dallak MA. Acylated ghrelin induces but deacylated ghrelin prevents hepatic steatosis and insulin resistance in lean rats: effects on DAG/ PKC/JNK pathway. Biomed Pharmacother. 2018;105:299–311. doi:10.1016/j.biopha.2018.05.098
  • Frangioudakis G, Burchfield JG, Narasimhan S, et al. Diverse roles for protein kinase C delta and protein kinase C epsilon in the generation of high-fat-diet-induced glucose intolerance in mice: regulation of lipogenesis by protein kinase C delta. Diabetologia. 2009;52(12):2616–2620. doi:10.1007/s00125-009-1543-0
  • Zhang J, Burrington CM, Davenport SK, et al. PKCδ regulates hepatic triglyceride accumulation and insulin signaling in Lepr(db/db) mice. Biochem Biophys Res Commun. 2014;450(4):1619–1625. doi:10.1016/j.bbrc.2014.07.048
  • Samuel VT, Liu ZX, Wang A, et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest. 2007;117(3):739–745. doi:10.1172/JCI30400
  • Greene MW, Burrington CM, Lynch DT, et al. Lipid metabolism, oxidative stress and cell death are regulated by PKC delta in a dietary model of nonalcoholic steatohepatitis. PLoS One. 2014;9(1):e85848. doi:10.1371/journal.pone.0085848
  • Klymenko K, Novokhatska T, Kizub I, et al.. PKC-δ isozyme gene silencing restores vascular function in diabetic rat. J Basic Clin Physiol Pharmacol. 2014:1–9. doi:10.1515/jbcpp-2013-0147
  • Pereira S, Park E, Mori Y, et al. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress. Am J Physiol Endocrinol Metab. 2014;307(1):E34–E46. doi:10.1152/ajpendo.00436.2013
  • De Mattia G, Bravi MC, Laurenti O, et al. Influence of reduced glutathione infusion on glucose metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism. 1998;47(8):993–997. doi:10.1016/s0026-0495(98)90357-2
  • Zhang XQ, Xu CF, Yu CH, et al. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20(7):1768–1776. doi:10.3748/wjg.v20.i7.1768
  • Yang M, Chen Z, Xiang S, et al. Hugan Qingzhi medication ameliorates free fatty acid-induced L02 hepatocyte endoplasmic reticulum stress by regulating the activation of PKC-δ. BMC Complement Med Ther. 2020;20(1):377. doi:10.1186/s12906-020-03164-3
  • Greene MW, Burrington CM, Ruhoff MS, et al. PKC{delta} is activated in a dietary model of steatohepatitis and regulates endoplasmic reticulum stress and cell death. J Biol Chem. 2010;285(53):42115–42129. doi:10.1074/jbc.M110.168575
  • Wang H, Chakrabarty S. Platelet-activating factor activates mitogen-activated protein kinases, inhibits proliferation, induces differentiation and suppresses the malignant phenotype of human colon carcinoma cells. Oncogene. 2003;22(14):2186–2191. doi:10.1038/sj.onc.1206348
  • Yu SM, Tsai SY, Kuo SC, et al. Inhibition of platelet function by A02131-1, a novel inhibitor of cGMP-specific phosphodiesterase, in vitro and in vivo. Blood. 1996;87(9):3758–3767.
  • Richardson L, Dixon CL, Aguilera-Aguirre L, et al. Oxidative stress-induced TGF-beta/TAB1-mediated p38MAPK activation in human amnion epithelial cells. Biol Reprod. 2018;99(5):1100–1112. doi:10.1093/biolre/ioy135
  • Liu YM, Wang X, Nawaz A, et al. Wogonin ameliorates lipotoxicity-induced apoptosis of cultured vascular smooth muscle cells via interfering with DAG-PKC pathway. Acta Pharmacol Sin. 2011;32(12):1475–1482. doi:10.1038/aps.2011.120
  • Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–1945. doi:10.2337/diabetes.49.11.1939
  • Niu W, Huang C, Nawaz Z, et al. Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem. 2003;278(20):17953–17962. doi:10.1074/jbc.M211136200
  • Hong F, Wu N, Ge Y, et al. Nanosized titanium dioxide resulted in the activation of TGF-β/Smads/p38MAPK pathway in renal inflammation and fibration of mice. J Biomed Mater Res A. 2016;104(6):1452–1461. doi:10.1002/jbm.a.35678
  • Leelahavanichkul K, Amornphimoltham P, Molinolo AA, et al. A role for p38 MAPK in head and neck cancer cell growth and tumor-induced angiogenesis and lymphangiogenesis. Mol Oncol. 2014;8(1):105–118. doi:10.1016/j.molonc.2013.10.003
  • Gao W, Du X, Lei L, et al. NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis. J Cell Mol Med. 2018;22(7):3408–3422. doi:10.1111/jcmm.13617
  • Wang W, Li X, Xu J. Magnesium isoglycyrrhizinate attenuates D-galactosamine/lipopolysaccharides induced acute liver injury of rat via regulation of the p38-MAPK and NF-κB signaling pathways. Immunopharmacol Immunotoxicol. 2018;40(3):262–267. doi:10.1080/08923973.2018.1441300
  • Tang Z, Xia N, Yuan X, et al. PRDX1 is involved in palmitate induced insulin resistance via regulating the activity of p38MAPK in HepG2 cells. Biochem Biophys Res Commun. 2015;465(4):670–677. doi:10.1016/j.bbrc.2015.08.008
  • Liu Y, Song A, Zang S, et al. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats. J Ethnopharmacol. 2015;162:244–252. doi:10.1016/j.jep.2014.12.040
  • Zhu Y, Zhang H, Wei Y, et al. Pea-derived peptides, VLP, LLP, VA, and LL, improve insulin resistance in HepG2 cells via activating IRS-1/PI3K/AKT and blocking ROS-mediated p38MAPK signaling. J Food Biochem. 2020;44(11):e13454. doi:10.1111/jfbc.13454
  • Gong XW, Xu YJ, Yang QH, et al. Effect of soothing gan (liver) and invigorating Pi (spleen) recipes on TLR4-p38 MAPK pathway in kupffer cells of non-alcoholic steatohepatitis rats. Chin J Integr Med. 2019;25(3):216–224. doi:10.1007/s11655-018-2829-6
  • Zhang HA, Yang XY, Xiao YF. AMPKα1 overexpression alleviates the hepatocyte model of nonalcoholic fatty liver disease via inactivating p38MAPK pathway. Biochem Biophys Res Commun. 2016;474(2):364–370. doi:10.1016/j.bbrc.2016.04.111
  • Böhm T, Berger H, Nejabat M, et al. Food-derived peroxidized fatty acids may trigger hepatic inflammation: a novel hypothesis to explain steatohepatitis. J Hepatol. 2013;59(3):563–570. doi:10.1016/j.jhep.2013.04.025
  • Luo Y, Tian G, Zhuang Z, et al. Berberine prevents non-alcoholic steatohepatitis-derived hepatocellular carcinoma by inhibiting inflammation and angiogenesis in mice. Am J Transl Res. 2019;11(5):2668–2682.
  • Ceccarelli S, Panera N, Mina M, et al. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget. 2015;6(39):41434–41452. doi:10.18632/oncotarget.5163
  • Zhao ZB, Ji K, Shen XY, et al. Di(2-ethylhexyl) phthalate promotes hepatic fibrosis by regulation of oxidative stress and inflammation responses in rats. Environ Toxicol Pharmacol. 2019;68:109–119. doi:10.1016/j.etap.2019.03.008