192
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Yishen Capsule Alleviated Symptoms of Diabetic Nephropathy via NOD-like Receptor Signaling Pathway

, , , , , , & show all
Pages 2183-2195 | Published online: 26 Jul 2022

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843
  • Samsu N, Bellini MI. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449. doi:10.1155/2021/1497449
  • Du X, Liu J, Xue Y, et al. Alteration of gut microbial profile in patients with diabetic nephropathy. Endocrine. 2021;73(1):71–84. doi:10.1007/s12020-021-02721-1
  • Ni L, Yuan C, Wu X, Veljkovic A. Endoplasmic reticulum stress in diabetic nephrology: regulation, pathological role, and therapeutic potential. Oxid Med Cell Longev. 2021;2021:7277966. doi:10.1155/2021/7277966
  • Davies MJ, D′Alessio DA, Fradkin J, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669–2701. doi:10.2337/dci18-0033
  • Fang J, Wei H, Sun Y, et al. Regulation of podocalyxin expression in the kidney of streptozotocin-induced diabetic rats with Chinese herbs (Yishen capsule). BMC Complement Altern Med. 2013;13:76. doi:10.1186/1472-6882-13-76
  • Fang J, Li Y. 益肾胶囊对糖尿病肾病大鼠足细胞损伤的影响 [Effect of Yi Shen Jiao Nang on podocytes in renal tissue and urine of rats with diabetic nephropathy]. Chin J Integr Traditional West Nephrol. 2008;1:14–18. Chinese.
  • Liu Y, Liu W, Zhang Z, et al. Yishen capsule promotes podocyte autophagy through regulating SIRT1/NF-kappaB signaling pathway to improve diabetic nephropathy. Ren Fail. 2021;43(1):128–140. doi:10.1080/0886022X.2020.1869043
  • Hu Y, Liu S, Liu W, et al. Potential molecular mechanism of Yishen Capsule in the treatment of diabetic nephropathy based on network pharmacology and molecular docking. Diabetes Metab Syndr Obes. 2022;15:943–962. doi:10.2147/DMSO.S350062
  • Wang S, Jiang H, Liu Q, et al. A comparative study on the traditional versus modern yellow rice wine processing methods using Taohong Siwu Decoction for pharmaceutical production. J Ethnopharmacol. 2022;290:115114. doi:10.1016/j.jep.2022.115114
  • Du H, Xiao G, Xue Z, et al. QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt-sensitive rats. Biomed Pharmacother. 2021;141:111941. doi:10.1016/j.biopha.2021.111941
  • Hussain Lodhi A, Ahmad FU, Furwa K, et al. Role of oxidative stress and reduced endogenous hydrogen sulfide in diabetic nephropathy. Drug Des Devel Ther. 2021;15:1031–1043. doi:10.2147/DDDT.S291591
  • Shi L, Xiao C, Zhang Y, et al. Vitamin D/vitamin D receptor/Atg16L1 axis maintains podocyte autophagy and survival in diabetic kidney disease. Ren Fail. 2022;44(1):694–705. doi:10.1080/0886022X.2022.2063744
  • Toblli JE, Bevione P, Di Gennaro F, et al. Understanding the mechanisms of proteinuria: therapeutic implications. Int J Nephrol. 2012;2012:546039. doi:10.1155/2012/546039
  • Liu W, Zhang Z, Liu Y, et al. 益肾胶囊通过上调SIRT1抑制高糖诱导足细胞凋亡的机制研究 [Mechanism of Yishen capsule inhibiting podocyte apoptosis induced by high glucose by raising SIRT1]. Chin J Integr Traditional West Nephrol. 2021;22(6):477–481. Chinese.
  • Auyeung KK, Han Q, Ko JK. Astragalus membranaceus: a review of its protection against inflammation and gastrointestinal cancers. Am J Chin Med. 2016;44(1):1–12. doi:10.1142/S0192415X16500014
  • Liu P, Zhao H, Luo Y. Anti-aging implications of astragalus membranaceus (Huangqi): a Well-KnownChinese Tonic. Aging Dis. 2017;8(6):868–886. doi:10.14336/AD.2017.0816
  • Zhang Y, Tao C, Xuan C, et al. Transcriptomic analysis reveals the protection of astragaloside iv against diabetic nephropathy by modulating inflammation. Oxid Med Cell Longev. 2020;2020:9542165. doi:10.1155/2020/9542165
  • Wei W, Zeng R, Gu C, et al. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116–141. doi:10.1016/j.jep.2016.05.023
  • Kil Y, Pham ST, Seo EK, et al. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch Pharm Res. 2017;40(6):655–675. doi:10.1007/s12272-017-0892-3
  • Sui Y, Liu W, Tian W, et al. A branched arabinoglucan from Angelica sinensis ameliorates diabetic renal damage in rats. Phytother Res. 2019;33(3):818–831. doi:10.1002/ptr.6275
  • Song CW, Wang SM, Zhou LL, et al. Isolation and identification of compounds responsible for antioxidant capacity of Euryale ferox seeds. J Agric Food Chem. 2011;59(4):1199–1204. doi:10.1021/jf1041933
  • Poon TY, Ong KL, Cheung BM. Review of the effects of the traditional Chinese medicine rehmannia six formula on diabetes mellitus and its complications. J Diabetes. 2011;3(3):184–200. doi:10.1111/j.1753-0407.2011.00130.x
  • Wang ZS, Gao F, Lu FE. Effect of ethanol extract of Rhodiola rosea on the early nephropathy in type 2 diabetic rats. J Huazhong Univ Sci Technolog Med Sci. 2013;33(3):375–378. doi:10.1007/s11596-013-1127-6
  • Wang S, Zhao X, Yang S, et al. Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3inflammasome pathway. Chem Biol Interact. 2017;278:48–53. doi:10.1016/j.cbi.2017.10.012
  • Lin S, Guo Y, Lv Z. Value analysis of using urinary microalbumin in artificial intelligence medical institutions to detect early renal damage in diabetes. J Healthc Eng. 2021;2021:6678454. doi:10.1155/2021/6678454
  • Bahreini E, Rezaei-Chianeh Y, Nabi-Afjadi M. Molecular mechanisms involved in intrarenal renin-angiotensin and alternative pathways in diabetic nephropathy - a review. Rev Diabet Stud. 2021;17(1):1–10. doi:10.1900/RDS.2021.17.1
  • Tziastoudi M, Stefanidis I. The role of cytokines in diabetic nephropathy. Int J Clin Pract. 2021;75(12):e14959. doi:10.1111/ijcp.14959
  • Köppel H, Yard BA, Christ M, et al. Modulation of angiotensin II-mediated signalling by heparan sulphate glycosaminoglycans. Nephrol Dial Transplant. 2003;18(11):2240–2247. doi:10.1093/ndt/gfg376
  • Karamian M, Moossavi M, Hemmati M. From diabetes to renal aging: the therapeutic potential of adiponectin. J Physiol Biochem. 2021;77(2):205–214. doi:10.1007/s13105-021-00790-4
  • Chen Y, Yang Y, Liu Z, He L. Adiponectin promotes repair of renal tubular epithelial cells by regulating mitochondrial biogenesis and function. Metabolism. 2022;128:154959. doi:10.1016/j.metabol.2021.154959
  • Boniecka I, Jeznach-Steinhagen A, Michalska W, et al. Nutritional status, selected nutrients intake and their relationship with the concentration of ghrelin and adiponectin in patients with diabetic nephropathy. Nutrients. 2021;13(12):4416. doi:10.3390/nu13124416
  • Lei Y, Cui Q, Yang G, et al. Statins mitigate stress-related vascular aging and atherosclerosis in apoE-deficient mice fed high fat-diet: the role of glucagon-like peptide-1/adiponectin axis. Front Cell Dev Biol. 2021;9:687868. doi:10.3389/fcell.2021.687868
  • Combs TP, Berg AH, Obici S, et al. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest. 2001;108(12):1875–1881. doi:10.1172/JCI14120
  • Goodarzi G, Setayesh L, Fadaei R, et al. Circulating levels of asprosin and its association with insulin resistance and renal function in patients with type 2 diabetes mellitus and diabetic nephropathy. Mol Biol Rep. 2021;48(7):5443–5450. doi:10.1007/s11033-021-06551-2
  • Watanabe T, Fujimoto Y, Morimoto A, et al. Development of fully automated and ultrasensitive assays for urinary adiponectin and their application as novel biomarkers for diabetic kidney disease. Sci Rep. 2020;10(1):15869. doi:10.1038/s41598-020-72494-6
  • Zhang Z, Ni L, Zhang L, et al. Empagliflozin regulates the AdipoR1/p-AMPK/p-ACC pathway to alleviate lipid deposition in diabetic nephropathy. Diabetes Metab Syndr Obes. 2021;14:227–240. doi:10.2147/DMSO.S289712
  • Zoja C, Xinaris C, Macconi D. Diabetic nephropathy: novel molecular mechanisms and therapeutic targets. Front Pharmacol. 2020;11:586892. doi:10.3389/fphar.2020.586892
  • Benedetti V, Lavecchia AM, Locatelli M, et al. Alteration of thyroid hormone signaling triggers the diabetes-induced pathological growth, remodeling, and dedifferentiation of podocytes. JCI Insight. 2019;4(18):e130249. doi:10.1172/jci.insight.130249
  • Navarro JF, Mora C. Role of inflammation in diabetic complications. Nephrol Dial Transplant. 2005;20(12):2601–2604. doi:10.1093/ndt/gfi155
  • Yiu WH, Wong DW, Wu HJ, et al. Kallistatin protects against diabetic nephropathy in db/db mice by suppressing AGE-RAGE induced oxidative stress. Kidney Int. 2016;89(2):386–398. doi:10.1038/ki.2015.331
  • Zhang H, Nair V, Saha J, et al. Podocyte specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 2017;92(4):909–921. doi:10.1016/j.kint.2017.03.027
  • Yaribeygi H, Atkin SL, Sahebkar A. Interleukin-18 and diabetic nephropathy: a review. J Cell Physiol. 2019;234(5):5674–5682. doi:10.1002/jcp.27427
  • Araújo LS, Torquato BGS, da Silva CA, et al. Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol. 2020;21(1):308. doi:10.1186/s12882-020-01960-0
  • Li MX, Zhao YF, Qiao HX, et al. CXCR3 knockdown protects against high glucose-induced podocyte apoptosis and inflammatory cytokine production at the onset of diabetic nephropathy. Int J Clin Exp Pathol. 2017;10(8):8829–8838.
  • Siddiqui K, Joy SS, Al-Rubeaan K. Association of urinary monocyte chemoattractant protein-1 (MCP-1) and kidney injury molecule-1 (KIM-1) with risk factors of diabetic kidney disease in type 2 diabetes patients. Int Urol Nephrol. 2019;51(8):1379–1386. doi:10.1007/s11255-019-02201-6
  • Zhang C, Boini KM, Xia M, et al. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia. Hypertension. 2012;60(1):154–162. doi:10.1161/HYPERTENSIONAHA.111.189688
  • Sayan M, Mossman BT. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part Fibre Toxicol. 2016;13(1):51. doi:10.1186/s12989-016-0162-4
  • Yaribeygi H, Katsiki N, Butler AE, et al. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discov Today. 2019;24(1):256–262. doi:10.1016/j.drudis.2018.08.005
  • Ising C, Venegas C, Zhang S, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784):669–673. doi:10.1038/s41586-019-1769-z
  • Zhang Y, Dong Z, Song W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer’s disease. Signal Transduct Target Ther. 2020;5(1):37. doi:10.1038/s41392-020-0145-7
  • Paramel Varghese G, Folkersen L, Strawbridge RJ, et al. NLRP3 inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc. 2016;5(5):e003031. doi:10.1161/JAHA.115.003031
  • Wang W, Pang J, Ha EH, et al. Development of novel NLRP3-XOD dual inhibitors for the treatment of gout. Bioorg Med Chem Lett. 2020;30(4):126944. doi:10.1016/j.bmcl.2019.126944
  • Kazemi F. Myostatin alters with exercise training in diabetic rats; possible interaction with glycosylated hemoglobin and inflammatory cytokines. Cytokine. 2019;120:99–106. doi:10.1016/j.cyto.2019.04.012
  • Yi H, Peng R, Zhang LY, et al. LincRNA-Gm4419 knockdown ameliorates NF-kappaB/NLRP3 inflammasome mediated inflammation in diabetic nephropathy. Cell Death Dis. 2017;8(2):e2583. doi:10.1038/cddis.2016.451
  • Wang S, Li Y, Fan J, et al. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation. Cell Death Dis. 2017;8(7):e2937. doi:10.1038/cddis.2017.292
  • Fu Y, Wu N, Zhao D. Function of NLRP3 in the pathogenesis and development of diabetic nephropathy. Med Sci Monit. 2017;23:3878–3884. doi:10.12659/MSM.903269
  • Lin J, Cheng A, Cheng K, et al. New Insights into the mechanisms of pyroptosis and implications for diabetic kidney disease. Int J Mol Sci. 2020;21(19):7057. doi: 10.3390/ijms21197057
  • Sun Z, Ma Y, Chen F, et al. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway. Chem Biol Interact. 2018;293:11–19. doi:10.1016/j.cbi.2018.07.011