587
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Potential Effect of DPP-4 Inhibitors Towards Hepatic Diseases and Associated Glucose Intolerance

, , , , , ORCID Icon & ORCID Icon show all
Pages 1845-1864 | Published online: 16 Jun 2022

References

  • Hopsu-Havu VK, Glenner GG. A new dipeptide naphthylamidase hydrolyzing glycyl–prolyl-b-naphthylamide. Histochemie. 1966;201:197–201.
  • Heymann E, Mentlein R. Liver dipeptidyl aminopeptidase IV hydrolyzes substance P. FEBS Lett. 1978;91(2):360–364. doi:10.1016/0014-5793(78)81210-1
  • Nicotera R, Casarella A, Longhitano E, et al. Antiproteinuric effect of DPP-IV inhibitors in diabetic and non-diabetic kidney diseases. Pharmacol Res. 2020;159:105019. doi:10.1016/j.phrs.2020.105019
  • Anderluh M, Kocic G, Tomovic K, Kocic H, Smelcerovic A. DPP-4 inhibition: a novel therapeutic approach to the treatment of pulmonary hypertension? Pharmacol Ther. 2019;201:1–7. doi:10.1016/j.pharmthera.2019.05.007
  • Yu DMT, Yao T, Chowdhury S, et al. The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J. 2010;277:1126–1144. doi:10.1111/j.1742-4658.2009.07526.x
  • Holst JJ. Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture, 2005. Diabetologia. 2006;49:253–260. doi:10.1007/s00125-005-0107-1
  • Iwanaga T, Nio-Kobayashi J. Cellular expression of CD26/dipeptidyl peptidase IV. Biomed Res. 2021;42(6):229–237. doi:10.2220/BIOMEDRES.42.229
  • Vanhoof G, Goossens F, Meester D, Hendriks D, Scharpé S. Proline motifs in peptides and their biological processing. FEBS J. 1995;9:736–744.
  • Singh AK, Yadav D, Sharma N, Jin JO. Dipeptidyl peptidase (Dpp)‐iv inhibitors with antioxidant potential isolated from natural sources: a novel approach for the management of diabetes. Pharmaceuticals. 2021;14(6):586. doi:10.3390/ph14060586
  • Gupta S, Sen U. More than just an enzyme: dipeptidyl peptidase-4 (DPP-4) and its association with diabetic kidney remodelling. Methods Mol Biol. 2019;176(5):139–148. doi:10.1016/j.phrs.2019.104391.More
  • Koh JA, Ong JH, Manan FA, Ee KY, Wong FC, Chai TT. Discovery of bifunctional anti-dpp-iv and anti-ace peptides from housefly larval proteins after in silico gastrointestinal digestion. Biointerface Res Appl Chem. 2022;12(4):4929–4944. doi:10.33263/BRIAC124.49294944
  • Heike M, Mobius U, Knuth A, Meuer S, Zum KM, Medizinische BI. Tissue distribution of the T cell activation antigen Tal. Serological, immunohistochemical and biochemical investigations. Clin Exp Immunol. 1988;1640:431–434.
  • Mentzel S, Dijkman HB, Van Son JP, Koene RA, Assmann KJ. Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. Journal Histochem Cytochem. 1996;44(5):445–461. doi:10.1177/44.5.8627002
  • Deacon CF. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front Endocrinol. 2019;10:1–14. doi:10.3389/fendo.2019.00080
  • Röhrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol. 2015;6:1–20. doi:10.3389/fimmu.2015.00386
  • Itou M, Kawaguchi T, Taniguchi E, Sata M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol. 2013;19(15):2298–2306. doi:10.3748/wjg.v19.i15.2298
  • Avogaro A, Kreutzenberg S, Fadini G. Dipeptidyl-peptidase 4 inhibition: linking metabolic control to cardiovascular protection. Curr Pharm Des. 2014;20(14):2387–2394. doi:10.2174/13816128113199990474
  • Casrouge A, Sauer AV, Barreira da Silva R, et al. Lymphocytes are a major source of circulating soluble dipeptidyl peptidase 4. Clin Exp Immunol. 2018;194(2):166–179. doi:10.1111/cei.13163
  • Jackman HL, Tan F, Schraufnagel D, et al. Plasma membrane-bound and lysosomal peptidases in human alveolar macrophages. Am J Respir Cell Mol Biol. 1995;13(2):196–204. doi:10.1165/ajrcmb.13.2.7626287
  • Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther. 2020;209:107503. doi:10.1016/j.pharmthera.2020.107503
  • Trzaskalski NA, Fadzeyeva E, Mulvihill EE. Dipeptidyl peptidase-4 at the interface between inflammation and metabolism. Clin Med Insights Endocrinol Diabetes. 2020;13:1–10. doi:10.1177/1179551420912972
  • Lee SY, Wu ST, Liang YJ, et al. Soluble dipeptidyl peptidase-4 induces fibroblast activation through proteinase-activated receptor-2. Front Pharmacol. 2020;11:1–13. doi:10.3389/fphar.2020.552818
  • Engel M, Hoffmann T, Wagner L, et al. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A. 2003;100(9):5063–5068. doi:10.1073/pnas.0230620100
  • Ohnuma K, Uchiyama M, Yamochi T, et al. Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1. J Biol Chem. 2007;282(13):10117–10131. doi:10.1074/jbc.M609157200
  • Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35(6):992–1019. doi:10.1210/er.2014-1035
  • Stulc T, Sedo A. Inhibition of multifunctional dipeptidyl peptidase-IV: is there a risk of oncological and immunological adverse effects? Diabetes Res Clin Pract. 2010;88(2):125–131. doi:10.1016/j.diabres.2010.02.017
  • Zhong J, Kankanala S, Rajagopalan S. DPP4 inhibition: insights from the bench and recent clinical studies. Curr Opin Lipidol. 2017;176(5):139–148. doi:10.1097/MOL.0000000000000340.DPP4
  • Shi S, Koya D, Kanasaki K. Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenes Tissue Repair. 2016;9(1):1–10. doi:10.1186/s13069-016-0038-0
  • Durinx C, Lambeir AM, Bosmans E, et al. Molecular characterization of dipeptidyl peptidase activity in serum soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-pro dipeptides. Eur J Biochem. 2000;267(17):5608–5613. doi:10.1046/j.1432-1327.2000.01634.x
  • Cordero OJ, Salgado FJ, Nogueira M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother. 2009;58(11):1725–1749. doi:10.1007/s00262-009-0728-1
  • Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl‐peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon‐like peptide‐ 1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem. 1993;214(3):829–835. doi:10.1111/j.1432-1033.1993.tb17986.x
  • Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes. 1995;44(9):1126–1131. doi:10.2337/diab.44.9.1126
  • Brubaker PL, Drucker DJ. Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Recept Channels. 2002;8(3–4):179–188. doi:10.3109/10606820213687
  • Ballantyne GH. Peptide YY(1-36) and peptide YY(3-36): part II. Changes after gastrointestinal surgery and bariatric surgery. Obes Surg. 2006;16(6):795–803. doi:10.1381/096089206777346619
  • Byrd JB, Touzin K, Sile S, et al. Dipeptidyl peptidase IV in angiotensin-converting enzyme inhibitor-associated angioedema. Hypertension. 2008;51(1):141–147. doi:10.1161/HYPERTENSIONAHA.107.096552
  • Mentlein R. Dipeptidyl-peptidase IV (CD26) -role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9–24. doi:10.1016/S0167-0115(99)00089-0
  • Liu X, Murali SG, Holst JJ, Ney DM. Enteral nutrients potentiate the intestinotrophic action of glucagon-like peptide-2 in association with increased insulin-like growth factor-I responses in rats. Am J Physiol. 2008;295(6):1794–1802. doi:10.1152/ajpregu.90616.2008
  • Walsh NA, Yusta B, Dacambra MP, Anini Y, Drucker DJ, Brubaker PL. Glucagon-like peptide-2 receptor activation in the rat intestinal mucosa. Endocrinology. 2003;144(10):4385–4392. doi:10.1210/en.2003-0309
  • Mentlein R, Roos T. Proteases involved in the metabolism of angiotensin II, bradykinin, calcitonin gene-related peptide (CGRP), and neuropeptide Y by vascular smooth muscle cells. Peptides. 1996;17(4):709–720. doi:10.1016/0196-9781(96)00066-6
  • Ahrén B, Hughes TE. Inhibition of dipeptidyl peptidase-4 augments insulin secretion in response to exogenously administered glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, pituitary adenylate cyclase-activating polypeptide, and gastrin-releasing peptide in mice. Endocrinology. 2005;146(4):2055–2059. doi:10.1210/en.2004-1174
  • Lun SWM, Wong CK, Ko FWS, Hui DSC, Lam CWK. Increased expression of plasma and CD4+ T lymphocyte costimulatory molecule CD26 in adult patients with allergic asthma. J Clin Immunol. 2007;27(4):430–437. doi:10.1007/s10875-007-9093-z
  • Liu Z, Christensson M, Forslöw A, De Meester I, Sundqvist K-G. A CD26-controlled cell surface cascade for regulation of T cell motility and chemokine signals. J Immunol. 2009;183(6):3616–3624. doi:10.4049/jimmunol.0804336
  • Rai AK, Thakur CP, Kumar P, Mitra DK. Impaired expression of CD26 compromises T-cell recruitment in human visceral leishmaniasis. Eur J Immunol. 2012;42(10):2782–2791. doi:10.1002/eji.201141912
  • Struyf S, Proost P, Schols D, et al. CD26/dipeptidyl-peptidase IV down-regulates the eosinophil chemotactic potency, but not the anti-HIV activity of human eotaxin by affecting its interaction with CC chemokine receptor 3. J Immunol. 1999;162:4903–4909.
  • Lambeir AM, Proost P, Durinx C, et al. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase iv reveals a striking selectivity within the chemokine family. J Biol Chem. 2001;276(32):29839–29845. doi:10.1074/jbc.M103106200
  • Wong PTY, Wong CK, Tam LS, Li EK, Chen DP, Lam CWK. Decreased expression of T lymphocyte co-stimulatory molecule cd26 on invariant natural killer t cells in systemic lupus erythematosus. Immunol Invest. 2009;38(5):350–364. doi:10.1080/08820130902770003
  • Crane M, Oliver B, Matthews G, et al. Immunopathogenesis of hepatic flare in HIV/hepatitis B virus (HBV)-coinfected individuals after the initiation of HBV-active antiretroviral therapy. J Infect Dis. 2009;199(7):974–981. doi:10.1086/597276
  • Faidley TD, Leiting B, Pryor KD, Lyons K, Hickey GJ, Thompson DR. Inhibition of dipeptidyl-peptidase IV does not increase circulating IGF-1 concentrations in growing pigs. Exp Biol Med. 2006;231:1373–1378. doi:10.1177/153537020623100811
  • Sakurada C, Sakurada S, Hayashi T, Katsuyama S, Tan-No K, Sakurada T. Degradation of endomorphin-2 at the supraspinal level in mice is initiated by dipeptidyl peptidase IV: an in vitro and in vivo study. Biochem Pharmacol. 2003;66(4):653–661. doi:10.1016/S0006-2952(03)00391-5
  • Király K, Szalay B, Szalai J, et al. Intrathecally injected Ile-Pro-Ile, an inhibitor of membrane ectoenzyme dipeptidyl peptidase IV, is antihyperalgesic in rats by switching the enzyme from hydrolase to synthase functional mode to generate endomorphin 2. Eur J Pharmacol. 2009;620(1–3):21–26. doi:10.1016/j.ejphar.2009.08.018
  • Guieu R, Fenouillet E, Devaux C, et al. CD26 modulates nociception in mice via its dipeptidyl-peptidase IV activity. Behav Brain Res. 2006;166(2):230–235. doi:10.1016/j.bbr.2005.08.003
  • Tian L, Gao J, Hao J, et al. Reversal of new-onset diabetes through modulating inflammation and stimulating β-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology. 2010;151(7):3049–3060. doi:10.1210/en.2010-0068
  • Zhang XY, De Meester I, Lambeir AM, et al. Study of the enzymatic degradation of vasostatin I and II and their precursor chromogranin A by dipeptidyl peptidase IV using high-performance liquid chromatography/electrospray mass spectrometry. J Mass Spectrom. 1999;34(4):255–263. doi:10.1002/(SICI)1096-9888(199904)34:4<255::AID-JMS752>3.0.CO;2-7
  • Radbakhsh S, Atkin SL, Simental-Mendia LE, Sahebkar A. The role of incretins and incretin-based drugs in autoimmune diseases. Int Immunopharmacol. 2021;98:107845. doi:10.1016/j.intimp.2021.107845
  • Gallwitz B. Emerging DPP-4 inhibitors: focus on linagliptin for type 2 diabetes. Diabetes Metab Syndr Obes Targets Ther. 2013;6:1–9. doi:10.2147/dmso.s23166
  • Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016;4(6):525–536. doi:10.1016/S2213-8587(15)00482-9
  • Andukuri R, Drincic A, Rendell M. Alogliptin: a new addition to the class of DPP-4 inhibitors. Diabetes Metab Syndr Obes Targets Ther. 2009;2:117–126. doi:10.2147/dmsott.s4312
  • Holst JJ. The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism. 2019;96:46–55. doi:10.1016/j.metabol.2019.04.014
  • Salvatore T, Nevola R, Pafundi PC, et al. Incretin hormones: the link between glycemic index and cardiometabolic diseases. Nutrients. 2019;11(8):1–12. doi:10.3390/nu11081878
  • Kishimoto M. Teneligliptin: a DPP-4 inhibitor for the treatment of type 2 diabetes. Diabetes Metab Syndr Obes Targets Ther. 2013;6:187–195. doi:10.2147/DMSO.S35682
  • Ahrén B. Use of DPP-4 inhibitors in type 2 diabetes: focus on sitagliptin. Diabetes Metab Syndr Obes Targets Ther. 2010;3:31–41. doi:10.2147/dmso.s7327
  • Rehfeld JF. The origin and understanding of the incretin concept. Front Endocrinol. 2018;9:1–7. doi:10.3389/fendo.2018.00387
  • Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512. doi:10.1124/pr.108.000604
  • Bell GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature. 1983;302(5910):716–718. doi:10.1038/302716a0
  • Ørskov C, Holst JJ, Knuhtsen S, Baldissera FGA, Poulsen SS, Nielsen OV. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology. 1986;119(4):1467–1475. doi:10.1210/endo-119-4-1467
  • Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79(2):616–619. doi:10.1172/JCI112855
  • Holst JJ, Ørskov C, Vagn Nielsen O, Schwartz TW. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987;211(2):169–174. doi:10.1016/0014-5793(87)81430-8
  • Ørskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon-like peptide-1 [proglucagon-(78-107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology. 1988;123(4):2009–2013. doi:10.1210/endo-123-4-2009
  • Hsu WH, Sue SP, Liang HL, et al. Dipeptidyl peptidase 4 inhibitors decrease the risk of hepatocellular carcinoma in patients with chronic hepatitis C infection and type 2 diabetes mellitus: a Nationwide Study in Taiwan. Front Public Heal. 2021;9:1–6. doi:10.3389/fpubh.2021.711723
  • Eggstein S, Kreisel W, Gerok W, Eggstein M. Dipeptidyl aminopeptidase IV in hospitalized patients and in galactosamine hepatitis of the rat: activity and lectin affinity chromatography in serum and hepatic plasma membranes. J Clin Chem Clin Biochem. 1989;27:547–554.
  • Nilius R, Stuhec K, Dietrich R. Changes of dipeptidylpeptidase IV as a membrane marker of lymphocytes in acute and chronic liver diseases–biochemical and cytochemical investigations. Physiol Res. 1991;40:95–102.
  • Matsumoto Y, Bishop GA, McCaughan GW. Altered zonal expression of the CD26 antigen (dipeptidyl peptidase IV) in human cirrhotic liver. Hepatology. 1992;15(6):1048–1053. doi:10.1002/hep.1840150613
  • Baumeier C, Schlüter L, Saussenthaler S, et al. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol Metab. 2017;6(10):1254–1263. doi:10.1016/j.molmet.2017.07.016
  • Thomas DL. Global control of hepatitis C: where challenge meets opportunity. Nat Med. 2013;19(7):850–858. doi:10.1038/nm.3184
  • Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358(9286):958–965. doi:10.1016/S0140-6736(01)06102-5
  • Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med. 2013;347(13):1673–1680.
  • Itou M, Kawaguchi T, Taniguchi E, et al. Altered expression of glucagon-like peptide-1 and dipeptidyl peptidase IV in patients with HCV-related glucose intolerance. J Gastroenterol Hepatol. 2008;23(2):244–251. doi:10.1111/j.1440-1746.2007.05183.x
  • Casrouge A, Decalf J, Ahloulay M, et al. Evidence for an antagonist form of the chemokine CXCL10 in patients chronically infected with HCV. J Clin Invest. 2011;121(1):308–317. doi:10.1172/JCI40594
  • Charles ED, Dustin LB. Chemokine antagonism in chronic hepatitis C virus infection. J Clin Invest. 2011;121(1):25–27. doi:10.1172/JCI45610
  • Dimitropoulou D, Karakantza M, Tsamandas AC, Mouzaki A, Theodorou G, Gogos CA. T-lymphocyte subsets in peripheral blood and liver tissue of patients with chronic hepatitis B and C. In vivo. 2011;25(5):833–840.
  • Rahman W, Huang P, Belov L, et al. Analysis of human liver disease using a cluster of differentiation (CD) antibody microarray. Liver Int. 2012;32(10):1527–1534. doi:10.1111/j.1478-3231.2012.02854.x
  • Sakata M, Kawahara A, Kawaguchi T, et al. Decreased expression of insulin and increased expression of pancreatic transcription factor PDX-1 in islets in patients with liver cirrhosis: a comparative investigation using human autopsy specimens. J Gastroenterol. 2013;48(2):277–285. doi:10.1007/s00535-012-0633-9
  • Miyajima I, Kawaguchi T, Fukami A, et al. Chronic HCV infection was associated with severe insulin resistance and mild atherosclerosis: a population-based study in an HCV hyperendemic area. J Gastroenterol. 2013;48(1):93–100. doi:10.1007/s00535-012-0610-3
  • Eslam M, Kawaguchi T, Del Campo JA, Sata M, Abo-Elneen Khattab M, Romero-Gomez M. Use of HOMA-IR in hepatitis C. J Viral Hepat. 2011;18(10):675–684. doi:10.1111/j.1365-2893.2011.01474.x
  • Fukushima N, Kuromatsu R, Arinaga-Hino T, et al. Adipocytokine involvement in hepatocellular carcinoma after sustained response to interferon for chronic hepatitis C. Hepatol Res. 2010;40(9):911–922. doi:10.1111/j.1872-034X.2010.00699.x
  • Sumie S, Kawaguchi T, Komuta M, et al. Significance of glucose intolerance and SHIP2 expression in hepatocellular carcinoma patients with HCV infection. Oncol Rep. 2007;18(3):545–552. doi:10.3892/or.18.3.545
  • Kawaguchi T, Ide T, Taniguchi E, et al. Clearance of HCV improves insulin resistance, beta-cell function, and hepatic expression of insulin receptor substrate 1 and 2. Am J Gastroenterol. 2007;102(3):570–576. doi:10.1111/j.1572-0241.2006.01038.x
  • Kawaguchi T, Nagao Y, Tanaka K, et al. Causal relationship between hepatitis C virus core and the development of type 2 diabetes mellitus in a hepatitis C virus hyperendemic area: a pilot study. Int J Mol Med. 2005;16(1):109–114. doi:10.3892/ijmm.16.1.109
  • Kawaguchi T, Yoshida T, Harada M, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165(5):1499–1508. doi:10.1016/S0002-9440(10)63408-6
  • Pazienza V, Clément S, Pugnale P, et al. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. Hepatology. 2007;45(5):1164–1171. doi:10.1002/hep.21634
  • Nishina S, Hino K. CD26/DPP4 as a therapeutic target in nonalcoholic steatohepatitis associated hepatocellular carcinoma. Cancers. 2022;14(2):454. doi:10.3390/cancers14020454
  • Shintani Y, Fujie H, Miyoshi H, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126:840–848. doi:10.1053/j.gastro.2003.11.056
  • Stone SF, Lee S, Keane NM, Price P, French MA. Association of increased hepatitis C virus (HCV)-specific IgG and soluble CD26 dipeptidyl peptidase IV enzyme activity with hepatotoxicity after highly active antiretroviral therapy in human immunodeficiency virus-HCV-coinfected patients. J Infect Dis. 2002;186(10):1498–1502. doi:10.1086/344892
  • Andrieu T, Thibault V, Malet I, et al. Similar increased serum dipeptidyl peptidase IV activity in chronic hepatitis C and other viral infections. J Clin Virol. 2003;27(1):59–68. doi:10.1016/S1386-6532(02)00128-2
  • Maes M, Bonaccorso S. Lower activities of serum peptidases predict higher depressive and anxiety levels following interferon-alpha-based immunotherapy in patients with hepatitis C. Acta Psychiatr Scand. 2004;109(2):126–131. doi:10.1046/j.0001-690X.2003.00230.x
  • Yang SS, Fu LS, Sen CC, Yeh HZ, Chen GH, Kao JH. Changes of soluble CD26 and CD30 levels correlate with response to interferon plus ribavirin therapy in patients with chronic hepatitis C. J Gastroenterol Hepatol. 2006;21(12):1789–1793. doi:10.1111/j.1440-1746.2006.04677.x
  • Arase Y, Suzuki F, Kobayashi M, et al. Efficacy and safety in sitagliptin therapy for diabetes complicated by chronic liver disease caused by hepatitis C virus. Hepatol Res. 2011;41(6):524–529. doi:10.1111/j.1872-034X.2011.00798.x
  • Kaku K, Kadowaki T, Terauchi Y, et al. Sitagliptin improves glycaemic excursion after a meal or after an oral glucose load in Japanese subjects with impaired glucose tolerance. Diabetes Obes Metab. 2015;17(11):1033–1041. doi:10.1111/dom.12507
  • Sumida Y, Yoneda M, Hyogo H, et al. A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease. J Gastroenterol. 2011;46(2):257–268. doi:10.1007/s00535-010-0305-6
  • Sumida Y, Yoneda M, Hyogo H, et al. Validation of the FIB4 index in a Japanese nonalcoholic fatty liver disease population. BMC Gastroenterol. 2012;12(1):2. doi:10.1186/1471-230X-12-2
  • Eguchi Y, Hyogo H, Ono M, et al. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol. 2012;47(5):586–595. doi:10.1007/s00535-012-0533-z
  • Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–2224. doi:10.1016/S0140-6736(20)32511-3
  • Miyazaki M, Kato M, Tanaka K, et al. Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Mol Med Rep. 2012;5(3):729–733. doi:10.3892/mmr.2011.707
  • Cui J, Philo L, Nguyen P, et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: a randomized controlled trial. J Hepatol. 2016;65(2):369–376. doi:10.1016/j.jhep.2016.04.021
  • Alam S, Kabir J, Mustafa G, Gupta U, Hasan S, Alam A. Effect of sitagliptin on hepatic histological activity and fibrosis of nonalcoholic steatohepatitis patients: a 1-year randomized control trial. Hepatic Med Evid Res. 2018;10(1):23–31. doi:10.4103/1319-3767.173762
  • Maiztegui B, Borelli MI, Madrid VG, et al. Sitagliptin prevents the development of metabolic and hormonal disturbances, increased β-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats. Clin Sci. 2011;120(2):73–80. doi:10.1042/CS20100372
  • Sujishi T, Fukunishi S, Ii M, et al. Sitagliptin can inhibit the development of hepatic steatosis in high-fructose diet-fed ob/ob mice. J Clin Biochem Nutr. 2015;57(3):244–253. doi:10.3164/jcbn.15-84
  • Lackner C. Hepatocellular ballooning in nonalcoholic steatohepatitis: the pathologist’s perspective. Expert Rev Gastroenterol Hepatol. 2011;5(2):223–231. doi:10.1586/egh.11.8
  • Caldwell S, Ikura Y, Dias D, et al. Hepatocellular ballooning in NASH. J Hepatol. 2010;53(4):719–723. doi:10.1016/j.jhep.2010.04.031
  • Yilmaz Y, Yonal O, Deyneli O, Celikel CA, Kalayci C, Duman DG. Effects of sitagliptin in diabetic patients with nonalcoholic steatohepatitis. Acta Gastroenterol Belg. 2012;75(2):240–244.
  • Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes e state-of-The-art. Mol Metab. 2021;46:101102. doi:10.1016/j.molmet.2020.101102
  • Sachinidis A, Nikolic D, Pantea A, et al. Cardiovascular outcomes trials with incretin-based medications: a critical review of data available on GLP-1 receptor agonists and DPP-4 inhibitors. Metabolism. 2020;111:154343. doi:10.1016/j.metabol.2020.154343
  • Li J, Albajrami O, Zhuo M, Hawley CE, Paik JM. Decision algorithm for prescribing SGLT2 inhibitors and GLP-1 receptor agonists for diabetic kidney disease. Clin J Am Soc Nephrol. 2020;15(11):1678–1688. doi:10.2215/CJN.02690320
  • Mantovani A, Petracca G, Beatrice G, Csermely A, Lonardo A, Targher G. Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites. 2021;11(2):73. doi:10.3390/metabo11020073
  • American Diabetes Association. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2021. Diabetes Care. 2021;44:S111–S124. doi:10.2337/dc21-S009
  • Ding X, Saxena NK, Lin S, Gupta N, Anania FA. Exendin-4, a Glucagon-Like Protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Gerontology. 2006;43(1):173–181. doi:10.1002/hep.21006.Exendin-4
  • Gupta NA, Mells J, Dunham RM, et al. Glucagon-like Peptide-1 Receptor (GLP-1R) is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology. 2010;51(5):1584–1592. doi:10.1163/9789087905132_002
  • Dhir G, Cusi K. Glucagon like peptide-1 receptor agonists for the management of obesity and non-alcoholic fatty liver disease: a novel therapeutic option. J Investig Med. 2018;66(1):7–10. doi:10.1136/jim-2017-000554
  • Svegliati-Baroni G, Saccomanno S, Rychlicki C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 2011;31(9):1285–1297. doi:10.1111/j.1478-3231.2011.02462.x
  • Trevaskis JL, Griffin PS, Wittmer C, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol. 2012;302(8):762–772. doi:10.1152/ajpgi.00476.2011
  • Rakipovski G, Rolin B, Nøhr J, et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE −/− and LDLr −/− mice by a mechanism that includes inflammatory pathways. JACC Basic to Transl Sci. 2018;3(6):844–857. doi:10.1016/j.jacbts.2018.09.004
  • Wang X, Ke J, Zhu YJ, et al. Dipeptidyl peptidase-4 (DPP4) inhibitor sitagliptin alleviates liver inflammation of diabetic mice by acting as a ROS scavenger and inhibiting the NFκB pathway. Cell Death Discov. 2021;7(1):1–10. doi:10.1038/s41420-021-00625-7
  • Velija-Asimi Z, Izetbegovic S, Karamehic J, et al. The effects of dipeptidyl peptidase-4 inhibitors in treatment of obese patients with type 2 diabetes. Med Arh. 2013;67(5):365–367. doi:10.5455/medarh.2013.67.365-367
  • Klöting N, Fasshauer M, Dietrich A, et al. Insulin-sensitive obesity. Am J Physiol. 2010;299(3):506–515. doi:10.1152/ajpendo.00586.2009
  • Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi:10.1002/hep.28431
  • Rufinatscha K, Radlinger B, Dobner J, et al. Dipeptidyl peptidase-4 impairs insulin signaling and promotes lipid accumulation in hepatocytes. Biochem Biophys Res Commun. 2017;485(2):366–371. doi:10.1016/j.bbrc.2017.02.071
  • Lamers D, Famulla S, Wronkowitz N, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011;60(7):1917–1925. doi:10.2337/db10-1707
  • Hattori S, Nomoto K, Suzuki T, Hayashi S. Beneficial effect of omarigliptin on diabetic patients with non-alcoholic fatty liver disease/non-alcoholic steatohepatitis. Diabetol Metab Syndr. 2021;13(1):1–6. doi:10.1186/s13098-021-00644-5
  • Foley JE, Jordan J. Weight neutrality with the DPP-4 inhibitor, vildagliptin: mechanistic basis and clinical experience. Vasc Health Risk Manag. 2010;6(1):541–548. doi:10.2147/vhrm.s10952
  • Balaban YH, Korkusuz P, Simsek H, et al. Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann Hepatol. 2007;6(4):242–250. doi:10.1016/s1665-2681(19)31905-2
  • Barchetta I, Ceccarelli V, Cimini FA, et al. Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. J Endocrinol Invest. 2021;44(5):979–988. doi:10.1007/s40618-020-01392-5
  • Ben-Shlomo S, Zvibel I, Shnell M, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54(6):1214–1223. doi:10.1016/j.jhep.2010.09.032
  • Firneisz G, Varga T, Lengyel G, et al. Serum dipeptidyl peptidase-4 activity in insulin resistant patients with non-alcoholic fatty liver disease: a novel liver disease biomarker. PLoS One. 2010;5(8):e12226. doi:10.1371/journal.pone.0012226
  • Lee M, Shin E, Bae J, et al. Dipeptidyl peptidase-4 inhibitor protects against non-alcoholic steatohepatitis in mice by targeting TRAIL receptor-mediated lipoapoptosis via modulating hepatic dipeptidyl peptidase-4 expression. Sci Rep. 2020;10(1):1–13. doi:10.1038/s41598-020-75288-y
  • Shirakawa J, Fujii H, Ohnuma K, et al. Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes. 2011;60(4):1246–1257. doi:10.2337/db10-1338
  • Itou M, Kawaguchi T, Taniguchi E, Oriishi T, Sata M. Dipeptidyl peptidase IV inhibitor improves insulin resistance and steatosis in a refractory nonalcoholic fatty liver disease patient: a case report. Case Rep Gastroenterol. 2012;6(2):538–544. doi:10.1159/000341510
  • Reynard MP, Turner D, Navarrete CV. Allele frequencies of polymorphisms of the tumour necrosis factor-α, interleukin-10, interferon-γ and interleukin-2 genes in a North European Caucasoid group from the UK. Eur J Immunogenet. 2000;27(4):241–249. doi:10.1046/j.1365-2370.2000.00227.x
  • Lee JH, Park HJ, Kim YA, et al. The phenotypic characteristic of liver-derived stem cells from adult human deceased donor liver. Transplant Proc. 2012;44(4):1110–1112. doi:10.1016/j.transproceed.2012.02.020
  • Shaheen MBH. Hematopoietic cytokines and growth factors. In: Cord Blood Biology, Transplantation, Banking, and Regulation. AABB Press; 2011:35–74.
  • Christopherson KW, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1α-mediated chemotaxis of human cord blood CD34 + progenitor cells. J Immunol. 2002;169(12):7000–7008. doi:10.4049/jimmunol.169.12.7000
  • Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science (80-). 2004;305(5686):1000–1003. doi:10.1126/science.1097071
  • Kawai T, Choi U, Liu PC, Whiting-Theobald NL, Linton GF, Malech HL. Diprotin A infusion into nonobese diabetic/severe combined immunodeficiency mice markedly enhances engraftment of human mobilized CD34+ peripheral blood cells. Stem Cells Dev. 2007;16(3):361–370. doi:10.1089/scd.2007.9997
  • Wyss BK, Donnelly AFW, Zhou D, Sinn AL, Pollok KE, Goebel WS. Enhanced homing and engraftment of fresh but not ex vivo cultured murine marrow cells in submyeloablated hosts following CD26 inhibition by Diprotin A. Exp Hematol. 2009;37(7):814–823. doi:10.1016/j.exphem.2009.03.005
  • Herman GA, Bergman A, Stevens C, et al. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006;91(11):4612–4619. doi:10.1210/jc.2006-1009
  • Ou X, O’Leary HA, Broxmeyer HE. Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types. Blood. 2013;122(2):161–169. doi:10.1182/blood-2013-02-487470
  • Blanchet X, Langer M, Weber C, Koenen R, von Hundelshausen P. Touch of chemokines. Front Immunol. 2012;3:1–18. doi:10.3389/fimmu.2012.00175
  • Lambeir AM, Díaz Pereira JF, Chacón P, et al. A prediction of DDP IV/CD26 domain structure from a physico-chemical investigation of dipeptidyl peptidase IV (CD26) from human seminal plasma. Biochim Biophys Acta. 1997;1340(2):215–226. doi:10.1016/S0167-4838(97)00045-9
  • Broxmeyer HE, Hoggatt J, Leary HAO, et al. Dipeptidylpeptidase 4 negatively regulates colony- stimulating factor activity and stress hematopoiesis. Nat Med. 2012;18(12):1786–1796. doi:10.1038/nm.2991
  • Proost P, Struyf S, Schols D, et al. Truncation of macrophage-derived chemokine by CD26/dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J Biol Chem. 1999;274(7):3988–3993. doi:10.1074/jbc.274.7.3988
  • Ye J. Mechanisms of insulin resistance in obesity. Front med. 2013;7(1):14–24. doi:10.1007/s11684-013-0262-6
  • Utzschneider KM, Kahn SE. The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab. 2006;91(12):4753–4761. doi:10.1210/jc.2006-0587
  • Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–4295. doi:10.1091/mbc.E02
  • Sciences M, Sugimura A, Seki T. Cloning, expression, and characterization of a cDNA encoding a novel human growth factor for primitive hematopoietic progenitor cells. Proc Natl Acad Sci USA. 1997;94:7577–7582. doi:10.1073/pnas.94.14.7577
  • Tarantino G, Citro V, Balsano C, Capone D. Could SCGF-beta levels be associated with inflammation markers and insulin resistance in male patients suffering from obesity-related NAFLD? Diagnostics. 2020;10(6):395. doi:10.3390/diagnostics10060395
  • Mavier P, Martin N, Couchie D, Préaux AM, Laperche Y, Zafrani ES. Expression of stromal cell-derived factor-1 and of its receptor CXCR4 in liver regeneration from oval cells in rat. Am J Pathol. 2004;165(6):1969–1977. doi:10.1016/S0002-9440(10)63248-8
  • Duarte N, Coelho I, Holovanchuk D, Inês Almeida J, Penha-Gonçalves C, Paula Macedo M. Dipeptidyl peptidase-4 is a pro-recovery mediator during acute hepatotoxic damage and mirrors severe shifts in Kupffer cells. Hepatol Commun. 2018;2(9):1080–1094. doi:10.1002/hep4.1225
  • Campbell TB, Broxmeyer HE. CD26 inhibition and hematopoiesis: a novel approach to enhance transplantation. Front Biosci. 2008;13:1795–1805. doi:10.2741/2800
  • Jungraithmayr W, De Meester I, Matheeussen V, Baerts L, Arni S, Weder W. CD26/DPP-4 inhibition recruits regenerative stem cells via stromal cell-derived factor-1 and beneficially influences ischaemia-reperfusion injury in mouse lung transplantation. Eur J Cardio-Thoracic Surg. 2012;41(5):1166–1173. doi:10.1093/ejcts/ezr180
  • Kawakita E, Yang F, Kumagai A, et al. Metformin mitigates DPP-4 inhibitor-induced breast cancer metastasis via suppression of mTOR signaling. Mol Cancer Res. 2021;19(1):61–73. doi:10.1158/1541-7786.MCR-20-0115
  • Wilson CH, Abbott CA. Expression profiling of dipeptidyl peptidase 8 and 9 in breast and ovarian carcinoma cell lines. Int J Oncol. 2012;41(3):919–932. doi:10.3892/ijo.2012.1522
  • Aoe K, Amatya VJ, Fujimoto N, et al. CD26 overexpression is associated with prolonged survival and enhanced chemosensitivity in malignant pleural mesothelioma. Clin Cancer Res. 2012;18(5):1447–1456. doi:10.1158/1078-0432.CCR-11-1990
  • Zhang T, Tong X, Zhang S, et al. The roles of dipeptidyl peptidase 4 (DPP4) and DPP4 inhibitors in different lung diseases: new evidence. Front Pharmacol. 2021;12:1–9. doi:10.3389/fphar.2021.731453
  • Starska K, Głowacka E, Kulig A, Lewy-Trenda I, Bryś M, Lewkowicz P. The role of tumor cells in the modification of T lymphocytes activity - The expression of the early CD69+, CD71+ and the late CD25+, CD26+, HLA/DR+ activation markers on TCD4+ and CD8+ cells in squamous cell laryngeal carcinoma. Part I. Folia Histochem Cytobiol. 2011;49(4):579–592. doi:10.5603/FHC.2011.0081
  • McCaughan GW, Siah CL, Abbott C, Wickson J, Ballesteros M, Bishop G. Dipeptidyl peptidase IV is down‐regulated in rat hepatoma cells at the mRNA level. J Gastroenterol Hepatol. 1993;8(2):142–145. doi:10.1111/j.1440-1746.1993.tb01505.x
  • Nishina S, Yamauchi A, Kawaguchi T, et al. Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cell Mol Gastroenterol Hepatol. 2019;7(1):115–134. doi:10.1016/j.jcmgh.2018.08.008
  • Higurashi T, Hosono K, Takahashi H, et al. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: a multicentre double-blind, placebo-controlled, randomised phase 3 trial. Lancet Oncol. 2016;17(4):475–483. doi:10.1016/S1470-2045(15)00565-3
  • Kawakita E, Koya D, Kanasaki K. CD26/DPP-4: type 2 diabetes drug target with potential influence on cancer biology. Cancers. 2021;13:2191. doi:10.3390/cancers13092191
  • Ming Z, Jiayi C, Yanyan Y, Zuquan Z, Lai X, Ra DM. Dipeptidyl peptidase-4 inhibitors and cancer risk in patients with type 2 diabetes: a meta-analysis of randomized clinical trials. Sci Rep. 2017;7:8273. doi:10.1038/s41598-017-07921-2
  • Penaforte-Saboia JG, Couri CEB, Albuquerque NV, et al. Emerging roles of dipeptidyl peptidase-4 inhibitors in delaying the progression of type 1 diabetes mellitus. Diabetes Metab Syndr Obes Targets Ther. 2021;14:565–573. doi:10.2147/DMSO.S294742
  • Kissow H, Hartmann B, Holst JJ, et al. Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice. Regul Pept. 2012;179(1–3):91–100. doi:10.1016/j.regpep.2012.08.016
  • Stecca BA, Nardo B, Chieco P, Mazziotti A, Bolondi L, Cavallari A. Aberrant dipeptidyl peptidase IV (DPP IV/CD26) expression in human hepatocellular carcinoma. J Hepatol. 1997;27(2):337–345. doi:10.1016/S0168-8278(97)80180-8
  • Kawakubo M, Tanaka M, Ochi K, et al. Dipeptidyl peptidase-4 inhibition prevents nonalcoholic steatohepatitis–associated liver fibrosis and tumor development in mice independently of its anti-diabetic effects. Sci Rep. 2020;10(1):1–11. doi:10.1038/s41598-020-57935-6
  • Iwamoto Y, Tajima N, Kadowaki T, et al. Efficacy and safety of sitagliptin monotherapy compared with voglibose in Japanese patients with type 2 diabetes: a randomized, double-blind trial. Diabetes Obes Metabol. 2010;12:613–622. doi:10.1111/j.1463-1326.2010.01197.x
  • Desai S, Brinker A, Joslyn Swann IS. Sitagliptin-associated drug allergy: review of spontaneous adverse event reports. Arch Intern Med. 2010;170(13):1169–1171. doi:10.1001/archinternmed.2010.188
  • Hamasaki H, Yanai H. The development of angioedema in a patient with type 2 diabetes due to a novel dipeptidyl peptidase-IV inhibitor, anagliptin. Int J Cardiol. 2013;168(3):e106. doi:10.1016/j.ijcard.2013.07.257
  • Gosmanov AR, Fontenot EC. Sitagliptin-associated angioedema. Diabetes Care. 2012;35:2012. doi:10.2337/dc12-0574
  • White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Al E. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–1335. doi:10.1056/NEJMoa1305889
  • Filippatos TD, Athyros VG, Elisaf MS. The pharmacokinetic considerations and adverse effects of DDP-4 inhibitors. Expert Opin Drug Metab Toxicol. 2014;10(6):787–812. doi:10.1517/17425255.2014.907274