248
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Photobiomodulation at 830 nm Stimulates Migration, Survival and Proliferation of Fibroblast Cells

ORCID Icon & ORCID Icon
Pages 2885-2900 | Received 21 May 2022, Accepted 02 Aug 2022, Published online: 21 Sep 2022

References

  • IDF. International Diabetes Federation Atlas.10th ed. Brussels, Belgium: IDF; 2021.
  • Saeedi P, Salpea P, Karuranga S, et al. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2020;162:108086. doi:10.1016/j.diabres.2020.108086
  • Abbas ZG, Boulton AJM. Diabetic foot ulcer disease in African continent:’ From clinical care to implementation’–Review of diabetic foot in last 60 years–1960 to 2020. Diabetes Res Clin Pract. 2022;183:109155. doi:10.1016/j.diabres.2021.109155
  • Riedel U, Schüßler E, Härtel D, et al. Wound treatment in diabetes patients and diabetic foot ulcers. Hautarzt. 2020;71:835–842. doi:10.1007/s00105-020-04699-9
  • Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376:2367–2375. doi:10.1056/NEJMra1615439
  • Peters EJG, Lipsky BA, Aragón‐Sánchez J, et al. Interventions in the management of infection in the foot in diabetes: a systematic review. Diabetes Metab Res Rev. 2020;36:e3282. doi:10.1002/dmrr.3282
  • Abbas ZG. The Diabetic Foot Worldwide: sub‐Saharan Africa. Foot Diabetes. 2020;25;51–60.
  • Sarfo-Kantanka O, Sarfo FS, Kyei I, Agyemang C, Mbanya JC. Incidence and determinants of diabetes-related lower limb amputations in Ghana, 2010–2015-a retrospective cohort study. BMC Endocr Disord. 2019;19:1–8. doi:10.1186/s12902-019-0353-8
  • Hegde VN, Prabhu V, Rao SB, et al. Effect of laser dose and treatment schedule on excision wound healing in diabetic mice. Photochem Photobiol. 2011;87:1433–1441. doi:10.1111/j.1751-1097.2011.00991.x
  • Ghotaslou R, Memar MY, Alizadeh N. Classification, microbiology and treatment of diabetic foot infections. J Wound Care. 2018;27:434–441. doi:10.12968/jowc.2018.27.7.434
  • Ridiandries A, Tan J, Bursill CA. The role of chemokines in wound healing. Int J Mol Sci. 2018;19:3217. doi:10.3390/ijms19103217
  • Rahim K, Saleha S, Zhu X, et al. Bacterial contribution in chronicity of wounds. Microb Ecol. 2017;73:710–721. doi:10.1007/s00248-016-0867-9
  • Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014;31:817–836. doi:10.1007/s12325-014-0140-x
  • Oryan A, Alemzadeh E, Moshiri A. Role of sugar-based compounds on cutaneous wound healing: what is the evidence? J Wound Care. 2019;28:s13–s24. doi:10.12968/jowc.2019.28.Sup3b.S13
  • Zhou X, Li M, Xiao M, et al. ERβ accelerates diabetic wound healing by ameliorating hyperglycemia-induced persistent oxidative stress. Front Endocrinol. 2019;10:499. doi:10.3389/fendo.2019.00499
  • Ayuk SM, Houreld NN, Abrahamse H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci. 2018;33:1085–1093. doi:10.1007/s10103-017-2432-2
  • Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8:a021873. doi:10.1101/cshperspect.a021873
  • Zhong J, Hu N, Xiong X, Lei Q, Li L. A novel promising therapy for skin aging: dermal multipotent stem cells against photoaged skin by activation of TGF-β/Smad and p38 MAPK signaling pathway. Med Hypotheses. 2011;76:343–346. doi:10.1016/j.mehy.2010.10.035
  • Luo K. Signaling cross talk between TGF-β/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 2017;9:a022137. doi:10.1101/cshperspect.a022137
  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic‐Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601. doi:10.1111/j.1524-475X.2008.00410.x
  • Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. doi:10.1016/S0092-8674(03)00432-X
  • Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34:599–610.
  • Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The treatment of impaired wound healing in diabetes: looking among old drugs. Pharmaceuticals. 2020;13:60. doi:10.3390/ph13040060
  • Houreld NN. Shedding light on a new treatment for diabetic wound healing: a review on phototherapy. Sci. World J. 2014;2014:1–13. doi:10.1155/2014/398412
  • Al-Watban FAH, Dai T, Hamblin MR, et al. Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice. Photomed Laser Surg. 2014;47:72–77.
  • Houreld N, Abrahamse H. Low-intensity laser irradiation stimulates wound healing in diabetic wounded fibroblast cells (WS1). Diabetes Technol Ther. 2010;12:971–978. doi:10.1089/dia.2010.0039
  • Chen H, Tu M, Shi J, et al. Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers Med Sci. 2021;36:555–562. doi:10.1007/s10103-020-03057-4
  • Jere SW, Houreld NN, Abrahamse H. Photobiomodulation at 660 nm stimulates proliferation and migration of diabetic wounded cells via the expression of epidermal growth factor and the JAK/STAT pathway. J Photochem Photobiol B Biol. 2018;179:74–83. doi:10.1016/j.jphotobiol.2017.12.026
  • Ayuk SM, Houreld NN, Abrahamse H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci. 2018;33:1085–1093.
  • Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: a review of red and near-infrared wavelength applications. Cell Biochem Funct. 2021;39(5):596–612. doi:10.1002/CBF.3629
  • Mokoena DR, Houreld NN, Dhilip Kumar SS, Abrahamse H. Photobiomodulation at 660 nm Stimulates Fibroblast Differentiation. Lasers Surg Med. 2019;52(7):671–681. doi:10.1002/lsm.23204
  • Hayes O, Ramos B, Rodriguez LL, Aguilar A, Badia T, Castro FO. Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of cell cycle in granulose and fibroblast cells of cattle. Anim Reprod Sci. 2005;87:181–192. doi:10.1016/j.anireprosci.2004.11.011
  • Rigau J, Sun CH, Trelles MA, Berns MW. Effects of the 633-nm laser on the behavior and morphology of primary fibroblast culture. in Effects of Low-Power Light on Biological Systems. Int Soc Optics Photonics. 1996;2630:38–42.
  • Chen ZJ, Yang JP, Wu BM, Tawil B. A novel three-dimensional wound healing model. J Dev Biol. 2014;2:198–209. doi:10.3390/jdb2040198
  • Martinotti S, Ranzato E. Scratch wound healing assay. Epidermal Cells. 2019;2:225–229.
  • Walter MNM, Wright KT, Fuller HR, MacNeil S, Johnson WEB. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res. 2010;316:1271–1281. doi:10.1016/j.yexcr.2010.02.026
  • Houreld N, Abrahamse H. Irradiation with a 632.8 nm helium-neon laser with 5 J/cm2 stimulates proliferation and expression of interleukin-6 in diabetic wounded fibroblast cells. Diabetes Technol Ther. 2007;9:451–459. doi:10.1089/dia.2007.0203
  • Felice F, Zambito Y, Belardinelli E, et al. Effect of different chitosan derivatives on in vitro scratch wound assay: a comparative study. Int J Biol Macromol. 2015;76:236–241. doi:10.1016/j.ijbiomac.2015.02.041
  • Chaves ME. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol. 2014;89:616–623. doi:10.1590/abd1806-4841.20142519
  • Ayuk SM, Houreld NN, Abrahamse H. Laser Irradiation Alters the Expression Profile of Genes Involved in the Extracellular Matrix In Vitro. Int. J. Photoenergy. 2014;2014:1–17. doi:10.1155/2014/604518
  • Zare F, Moradi A, Fallahnezhad S, et al. Photobiomodulation with 630 plus 810 nm wavelengths induce more in vitro cell viability of human adipose stem cells than human bone marrow-derived stem cells. J Photochem Photobiol B Biol. 2019;201:111658. doi:10.1016/j.jphotobiol.2019.111658
  • Sekhejane PR, Houreld NN, Abrahamse H. Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro. Photomed Laser Surg. 2011;29:521–530. doi:10.1089/pho.2010.2877
  • Stadelmann WK, Digenis AG, Tobin GR. Physiology and healing dynamics of chronic cutaneous wounds. Am J Surg. 1998;176:26S–38S. doi:10.1016/S0002-9610(98)00183-4
  • Liu P, Choi JW, Lee MK, Choi YH, Nam TJ. Wound healing potential of spirulina protein on CCD-986sk cells. Mar Drugs. 2019;17:130. doi:10.3390/md17020130
  • Masson-Meyers DS, Bumah VV, Enwemeka CS. Blue light does not impair wound healing in vitro. J Photochem Photobiol B Biol. 2016;160:53–60. doi:10.1016/j.jphotobiol.2016.04.007
  • Simpson KJ, Selfors LM, Bui J, et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nat Cell Biol. 2008;10:1027–1038. doi:10.1038/ncb1762
  • Chen Y. Scratch wound healing assay. Bio-Protocol. 2012;2:e100–e100. doi:10.21769/BioProtoc.100
  • Etemadi A, Namin ST, Hodjat M, Kosarieh E, Hakimiha N. Assessment of the Photobiomodulation Effect of a Blue Diode Laser on the Proliferation and Migration of Cultured Human Gingival Fibroblast Cells: a Preliminary In Vitro Study. J Lasers Med Sci. 2020;11:491. doi:10.34172/jlms.2020.77
  • Houreld N, Sekhejane PR, Abrahamse H Low intensity laser irradiation stimulates healing in stressed models 8th International Congress of World Association of Laser Therapy held in Bergen, Norway 23–26; 2010.
  • Chung T, Peplow PV, Baxter GD. Laser photobiostimulation of wound healing: defining a dose response for splinted wounds in diabetic mice. Lasers Surg Med. 2010;42:816–824. doi:10.1002/lsm.20981
  • Kocherova I, Bryja A, Błochowiak K, et al. Photobiomodulation with red and near-infrared light improves viability and modulates expression of mesenchymal and apoptotic-related markers in human gingival fibroblasts. Materials. 2021;14(12):3427. doi:10.3390/ma14123427
  • da Silva PA. Photobiomodulation can alter mRNA levels cell death-related. Lasers Med Sci. 2019;34:1373–1380. doi:10.1007/s10103-019-02732-5
  • Bartkova J, Grøn B, Dabelsteen E, Bartek J. Cell-cycle regulatory proteins in human wound healing. Arch Oral Biol. 2003;48:125–132. doi:10.1016/S0003-9969(02)00202-9
  • Bertoli C, Skotheim JM, De Bruin RAM. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14:518–528. doi:10.1038/nrm3629
  • Li LJ, Wu F, Zhang JQ, et al. The crude ethanol extract of Periplaneta americana L. stimulates wound healing in vitro & in vivo. Chin Med. 2019;14:1–9. doi:10.1186/s13020-019-0259-4
  • Zahm J, Kaplan H, Herard A, et al. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil Cytoskeleton. 1997;37:33–43. doi:10.1002/(SICI)1097-0169(1997)37:1<33::AID-CM4>3.0.CO;2-I
  • Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol. 2017;9:a022095. doi:10.1101/cshperspect.a022095
  • Wang XJ, Han G, Owens P, Siddiqui Y, Li AG. Role of TGFβ-mediated inflammation in cutaneous wound healing. J Investigative Dermatol Symposium Proce. 2006;11:112–117. doi:10.1038/sj.jidsymp.5650004
  • Chen X, Thibeault SL. Response of fibroblasts to transforming growth factor-β1 on two-dimensional and in three-dimensional hyaluronan hydrogels. Tissue Eng Part A. 2012;18:2528–2538. doi:10.1089/ten.tea.2012.0094
  • Branton MH, Kopp JB. TGF-β and fibrosis. Microbes Infect. 1999;1:1349–1365. doi:10.1016/S1286-4579(99)00250-6
  • Border WA, Noble NA. Transforming growth factor β in tissue fibrosis. N Engl J Med. 1994;331:1286–1292. doi:10.1056/NEJM199411103311907
  • Krummel TM, Michna BA, Thomas BL, et al. Transforming growth factor beta (TGF-β) induces fibrosis in a fetal wound model. J Pediatr Surg. 1988;23:647–652. doi:10.1016/S0022-3468(88)80638-9
  • Vyas B, Ishikawa K, Duflo S, Chen X, Thibeault S. Inhibitory effects of HGF and IL-6 on TGF-β1 mediated vocal fibroblast-myofibroblast differentiation. Ann Otol Rhinol Laryngol. 2010;119:350. doi:10.1177/000348941011900513
  • Klass BR, Grobbelaar AO, Rolfe KJ. Transforming growth factor β1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgrad Med J. 2009;85:9–14. doi:10.1136/pgmj.2008.069831
  • Mauviel A. Transforming growth factor-β signaling in skin: stromal to epithelial cross-talk. J Invest Dermatol. 2009;129:7–9. doi:10.1038/jid.2008.385
  • Viloria-Petit A, Richard A, Zours S, Jarad M, Coomber BL. Role of transforming growth factor beta in angiogenesis. Biochemical Basis Therapeutic Implications Angiogenesis. 2013;2;23–45.
  • Xu X, Zhao Z, Huang Z, et al. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018;6:1–31. doi:10.1038/s41413-017-0004-5
  • Zhang YE. Non-Smad pathways in TGF-β signaling. Cell Res. 2009;19:128–139. doi:10.1038/cr.2008.328