442
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Association of Cytotoxic T-Lymphocyte Antigen-4 Gene Polymorphism with Type 1 Diabetes Mellitus: In silico Analysis of Biological Features of CTLA-4 Protein on Ethiopian Population

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 2733-2751 | Published online: 05 Sep 2022

References

  • Giacco F, Brownlee M, Holt RI, Cockram C, Flyvbjerg A, Goldstein BJ. Textbook of Diabetes. Wiley; 2010.
  • Worede A, Alemu S, Gelaw YA, Abebe M. The prevalence of impaired fasting glucose and undiagnosed diabetes mellitus and associated risk factors among adults living in a rural Koladiba town, northwest Ethiopia. BMC Res Notes. 2017;10(1):251. doi:10.1186/s13104-017-2571-3
  • Guja C, Marshall S, Welsh K, et al. The study of CTLA-4 and vitamin D receptor polymorphisms in the Romanian type 1 diabetes population. J Cellular Mol Med. 2002;6(1):75–81. doi:10.1111/j.1582-4934.2002.tb00312.x
  • Tesfaye T, Shikur B, Shimels T, Firdu N. Prevalence and factors associated with diabetes mellitus and impaired fasting glucose level among members of federal police commission residing in Addis Ababa, Ethiopia. BMC Endocr Disord. 2016;16(1):68. doi:10.1186/s12902-016-0150-6
  • Kanazawa Y, Motohashi Y, Yamada S, et al. Frequency of CTLA-4 gene CT60 polymorphism may not be affected by vitamin D receptor gene Bsm I polymorphism or HLA DR9 in autoimmune-related type 1 diabetes in the Japanese. Ann N Y Acad Sci. 2006;1079(1):251–256. doi:10.1196/annals.1375.038
  • Bouqbis L, Izaabel H, Akhayat O, et al. Association of the CTLA4 promoter region (− 1661G allele) with type 1 diabetes in the South Moroccan population. Genes Immun. 2003;4(2):132. doi:10.1038/sj.gene.6363933
  • Bilous R, Donnelly R. Handbook of Diabetes. John Wiley & Sons; 2010.
  • White PT. HANDBOOK OF DIABETES. Br J Gen Pract. 1993;43(373):355.
  • Powers MA. Handbook of Diabetes Nutritional Management. Aspen Publishers; 1987.
  • Ann Kelly M, Rees SD, Barnett AH, Bain SC. Molecular genetics of type 1 diabetes. In: DeFronzo RA, Ferrannini E, Zimmet P, Alberti KG, editors. International Textbook of Diabetes Mellitus. Chichester, UK: John Wiley & Sons, Ltd; 2015:454–466.
  • Haller K, Kisand K, Nemvalts V, Laine AP, Ilonen J, Uibo R. Type 1 diabetes is insulin −2221 MspI and CTLA-4 +49 A/G polymorphism dependent. Eur J Clin Invest. 2004;34(8):543–548. doi:10.1111/j.1365-2362.2004.01385.x
  • Barani M, Sargazi S, Mohammadzadeh V, et al. Theranostic advances of bionanomaterials against gestational diabetes mellitus: a preliminary review. JFB. 2021;12(4):54. doi:10.3390/jfb12040054
  • Hossain MS, Roy AS, Islam MS. In silico analysis predicting effects of deleterious SNPs of human RASSF5 gene on its structure and functions. Sci Rep. 2020;10(1):14542. doi:10.1038/s41598-020-71457-1
  • Ide A, Kawasaki E, Abiru N, et al. Association between IL-18 gene promoter polymorphisms and CTLA-4 gene 49A/G polymorphism in Japanese patients with type 1 diabetes. J Autoimmun. 2004;22(1):73–78. doi:10.1016/j.jaut.2003.10.001
  • Fajardy I, Vambergue A, Stuckens C, Weill J, Danze PM, Fontaine P. CTLA-4 49 A/G dimorphism and type 1 diabetes susceptibility: a French case-control study and segregation analysis. Evidence of a maternal effect: CTLA-4 dimorphism and type 1 diabetes. Eur J Immunol. 2002;29(3):251–257. doi:10.1046/j.1365-2370.2002.00309.x
  • Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 FUNCTION. Annu Rev Immunol. 2006;24(1):65–97. doi:10.1146/annurev.immunol.24.021605.090535
  • Jonson C-O, Lernmark Å, Ludvigsson J, Rutledge EA, Hinkkanen A, Faresjö M. The importance of CTLA-4 polymorphism and human leukocyte antigen genotype for the induction of diabetes-associated cytokine response in healthy school children. Pediatr Diabetes. 2007;8(4):185–192. doi:10.1111/j.1399-5448.2007.00245.x
  • Khan MY, Riaz R, Malik SA, Ali M, Afzal MS. Association of CTLA-4 polymorphisms and autoimmune type-1 diabetes mellitus susceptibility in Pakistani population. Turkish J Biochem. 2018;43(2):173–175. doi:10.1515/tjb-2017-0079
  • Ahmed NS. CTLA4 gene polymorphisms associated with insulin dependent diabetes mellitus (IDDM) type I in Iraqi population. Iraqi J Cancer Med Genet. 2018;5(2):1–4.
  • Alam S, Sayem M, Hasan MK, Sharmin Z, Pavel MA, Hossain MF. Prediction of deleterious single nucleotide polymorphisms in human p53 gene. Preprint. Bioinformatics. 2018. doi:10.1101/408476
  • Hassan MM, Omer SE, Khalf-allah RM, Mustafa RY, Ali IS, Mohamed SB. Bioinformatics approach for prediction of functional coding/noncoding simple polymorphisms (SNPs/Indels) in human BRAF gene. Adv Bioinformatics. 2016;2016:1–15. doi:10.1155/2016/2632917
  • Tavares NA, Santos MMS, Moura R, et al. Association of TNF-α, CTLA4, and PTPN22 polymorphisms with type 1 diabetes and other autoimmune diseases in Brazil. Genet Mol Res. 2015;14(4):18936–18944. doi:10.4238/2015.December.28.42
  • Mosaad YM, Elsharkawy AA, El-Deek BS. Association of CTLA-4 (+49A/G) gene polymorphism with type 1 diabetes mellitus in Egyptian children. Immunol Invest. 2012;41(1):28–37. doi:10.3109/08820139.2011.579215
  • World Health Organizations. Global Burden of Diabetes. World Health Organizations. 2021.
  • Wolde HF, Derso T, Biks GA, et al. High hidden burden of diabetes mellitus among adults aged 18 years and above in urban northwest Ethiopia. J Diabetes Res. 2020;2020:1–9. doi:10.1155/2020/9240398
  • Silver B, Ramaiya K, Andrew SB, et al. EADSG guidelines: insulin therapy in diabetes. Diabetes Ther. 2018;9(2):449–492. doi:10.1007/s13300-018-0384-6
  • Wondemagegn AT, Bizuayehu HM, Abie DD, Ayalneh GM, Tiruye TY, Tessema MT. Undiagnosed diabetes mellitus and related factors in East Gojjam (NW Ethiopia) in 2016: a community-based study. J Public Health Res. 2017;6(1). doi:10.4081/jphr.2017.834
  • Sahile AT, Bekele GE. Prevalence of diabetes mellitus and associated factors in Addis Ababa public health facilities, Addis Ababa, Ethiopia, 2016. Diabetes Metab Syndr Obes. 2020;13:501–508. doi:10.2147/DMSO.S237995
  • Balcha SA, Phillips DIW, Trimble ER. Type 1 diabetes in a resource-poor setting: malnutrition related, malnutrition modified, or just diabetes? Curr Diab Rep. 2018;18(7):47. doi:10.1007/s11892-018-1003-7
  • Habtewold TD, Tsega WD, Wale BY. Diabetes mellitus in outpatients in Debre Berhan Referral Hospital, Ethiopia. J Diabetes Res. 2016;2016:1–6. doi:10.1155/2016/3571368
  • Tsega G, Getaneh G, Taddesse G, Alam K. Are Ethiopian diabetic patients protected from financial hardship? PLoS One. 2021;16(1):e0245839. doi:10.1371/journal.pone.0245839
  • Nisticò L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Hum Mol Genet. 1996;5(7):1075–1080. doi:10.1093/hmg/5.7.1075
  • CSA. Summary and Statistical Report of the 2007 Population and Housing Census Addis Ababa, Ethiopia. Population and Housing Census Commission. 2008:57–60.
  • World Health Organization. Global Report on Diabetes. Geneva: World Health Organization; 2016.
  • García-Alegría AM, Anduro-Corona I, Pérez-Martínez CJ, Guadalupe Corella-Madueño MA, Rascón-Durán ML, Astiazaran-Garcia H. Quantification of DNA through the NanoDrop spectrophotometer: methodological validation using standard reference material and Sprague Dawley rat and human DNA. Int J Anal Chem. 2020;2020:1–9. doi:10.1155/2020/8896738
  • Choura M, Rebaï A. Applications of computational tools to predict functional SNPs effects in human ErbB genes. J Recept Signal Transduct. 2009;29(5):286–291. doi:10.1080/10799890902911948
  • Arshad M, Bhatti A, John P, Zhang Y. Identification and in silico analysis of functional SNPs of human TAGAP protein: a comprehensive study. PLoS One. 2018;13(1):e0188143. doi:10.1371/journal.pone.0188143
  • Mah JTL, Low ESH, Lee E. In silico SNP analysis and bioinformatics tools: a review of the state of the art to aid drug discovery. Drug Discov Today. 2011;16(17–18):800–809. doi:10.1016/j.drudis.2011.07.005
  • Capriotti E, Fariselli P. PhD-SNPg: a webserver and lightweight tool for scoring single nucleotide variants. Nucl Acids Res. 2017;45(W1):W247–W52. doi:10.1093/nar/gkx369
  • Capriotti E, Calabrese R, Fariselli P, Martelli P, Altman RB, Casadio R. WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genom. 2013;14(Suppl 3):S6. doi:10.1186/1471-2164-14-S3-S6
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Zhang M, Huang C, Wang Z, Lv H, Li X. In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract. BMC Mol and Cell Biol. 2020;21(1):12. doi:10.1186/s12860-020-00252-7
  • Pejaver V, Urresti J, Lugo-Martinez J, et al. MutPred2: inferring the molecular and phenotypic impact of amino acid variants. preprint. Bioinformatics. 2017. doi:10.1093/bioinformatics/btx272
  • Kalia N, Sharma A, Kaur M, Kamboj SS, Singh J. A comprehensive in silico analysis of non-synonymous and regulatory SNPs of human MBL2 gene. SpringerPlus. 2016;5(1):811. doi:10.1186/s40064-016-2543-4
  • Saeed NA, Hamzah IH, Ali ANM, Abuderman AA. Prediction of single nucleotide polymorphisms (SNPs) in apolipoprotein E gene and their possible associations with a deleterious effect on the structure and functional properties: an in silico approach. Netw Model Anal Health Inform Bioinform. 2018;7(1):16. doi:10.1007/s13721-018-0178-9
  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–858. doi:10.1038/nprot.2015.053
  • Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008;9(1):40. doi:10.1186/1471-2105-9-40
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. doi:10.1002/jcc.20084
  • Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform. 2010;11(1):548. doi:10.1186/1471-2105-11-548
  • Berezin C, Glaser F, Rosenberg J; Berezin CeaC. The identification of functionally and structurally important residues in protein sequences. Bioinformatics. 2004;20:1322–1324. doi:10.1093/bioinformatics/bth070
  • Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243–250.
  • Fatih Ç, Doğa T, Deniz Ö, Sema A, Olcay Y. CTLA-4 (+49A/G) polymorphism and type-1 diabetes in Turkish children. J Clin Res Pediatr Endocrinol. 2013;5(1):40–43. doi:10.4274/Jcrpe.879
  • Osei-Hyiaman D, Hou L, Zhiyin R, et al. Association of a novel point mutation (C159G) of the CTLA4 gene with type 1 diabetes in West Africans but not in Chinese. Diabetes. 2001;50(9):2169–2171. doi:10.2337/diabetes.50.9.2169
  • Philip B, Isabel W. Association of cytotoxic T lymphocyte-associated antigen 4 gene single nucleotide polymorphism with type 1 diabetes mellitus in Madurai population of Southern India. Indian J Hum Genet. 2011;17(2):85. doi:10.4103/0971-6866.86189
  • Van der Auwera BJ, Vandewalle CL, Schuit FC, et al. CTLA‐4 gene polymorphism confers susceptibility to insulin‐dependent diabetes mellitus (IDDM) independently from age and from other genetic or immune disease markers. Clin Exp Immunol. 1997;110(1):98–103. doi:10.1111/j.1365-2249.1997.t01-1-512-ce1410.x
  • Bobby Koeleman HMS. Association of CTLA-4 polymorphisms with type 1 diabetes in the Egyptian Population. J Diabetes Metab. 2013;04(07). doi:10.4172/2155-6156.1000291
  • Jin P, Xiang B, Huang G, Zhou Z. The association of cytotoxic T-lymphocyte antigen-4+ 49A/G and CT60 polymorphisms with type 1 diabetes and latent autoimmune diabetes in Chinese adults. J Endocrinol Invest. 2015;38(2):149–154. doi:10.1007/s40618-014-0162-x
  • Fajardy I, Vambergue A, Stuckens C, Weill J, Danze PM, Fontaine P. CTLA‐4 49 A/G dimorphism and type 1 diabetes susceptibility: a French case–control study and segregation analysis. Evidence of a maternal effect. Eur J Immunol. 2002;29(3):251–257.
  • Cosentino A, Gambelunghe G, Tortoioli C, Falorni A. CTLA-4 gene polymorphism contributes to the genetic risk for latent autoimmune diabetes in adults. Ann N Y Acad Sci. 2006;958(1):337–340. doi:10.1111/j.1749-6632.2002.tb03000.x
  • Benmansour J, Stayoussef M, Al-Jenaidi FA, et al. Association of single nucleotide polymorphisms in cytotoxic T-lymphocyte antigen 4 and susceptibility to autoimmune type 1 diabetes in tunisians. CVI. 2010;17(9):1473–1477. doi:10.1128/CVI.00099-10
  • Padma-Malini R, Rathika C, Ramgopal S, et al. Associations of CTLA4 +49 A/G dimorphism and HLA-DRB1*/DQB1* alleles with type 1 diabetes from South India. Biochem Genet. 2018;56(5):489–505. doi:10.1007/s10528-018-9856-7
  • Balic I, Angel B, Codner E, Carrasco E, Pérez-Bravo F. Association of CTLA-4 polymorphisms and clinical-immunologic characteristics at onset of type 1 diabetes mellitus in children. Hum Immunol. 2009;70(2):116–120. doi:10.1016/j.humimm.2008.12.007
  • Kamel AM, Mira MF, Mossallam GI, et al. Lack of association of CTLA-4 +49 A/G polymorphism with predisposition to type 1 diabetes in a cohort of Egyptian families. Egypt J Med Hum Genet. 2014;15(1):25–30. doi:10.1016/j.ejmhg.2013.09.002
  • Tawfik M, Abou El-Ella S, Abouzouna Z. Association of CTLA-4 (+49A/G) gene polymorphism with type 1 diabetes mellitus in Egyptian children. Menoufia Med J. 2016;29(1):100. doi:10.4103/1110-2098.178996
  • Wang J, Liu L, Ma J, Sun F, Zhao Z, Gu M. Common variants on cytotoxic T lymphocyte antigen-4 polymorphisms contributes to type 1 diabetes susceptibility: evidence based on 58 studies. PLoS One. 2014;9(1):e85982. doi:10.1371/journal.pone.0085982
  • Lemos MC, Coutinho E, Gomes L, et al. The CTLA4 +49 A/G polymorphism is not associated with susceptibility to type 1 diabetes mellitus in the Portuguese population. Int J Immunogenet. 2009;36(3):193–195. doi:10.1111/j.1744-313X.2009.00844.x
  • Majaliwa ES, Elusiyan BEJ, Adesiyun OO, et al. Type 1 diabetes mellitus in the African population: epidemiology and management challenges. Acta Biomed. 2008;79(3):255–259.
  • Fernández-Mestre M, Sánchez K, Balbás O, et al. Influence of CTLA-4 gene polymorphism in autoimmune and infectious diseases. Hum Immunol. 2009;70(7):532–535. doi:10.1016/j.humimm.2009.03.016
  • Dunlavy DM, O’Leary DP, Klimov D, Thirumalai D. HOPE: a homotopy optimization method for protein structure prediction. J Comput Biol. 2005;12(10):1275–1288. doi:10.1089/cmb.2005.12.1275
  • Hea A, Abadi S, Martz E. ConSurf: improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucl Acids Res. 2016;44:W344–W350. doi:10.1093/nar/gkw408
  • Zhang YS. TM-align: a protein structure alignment algorithm based on the TMscore. Nucleic Acids Res. 2005;33:2302–2309. doi:10.1093/nar/gki524
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi:10.1002/jcc.21334
  • Gough SCL, Walker LSK, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev. 2005;204(1):102–115. doi:10.1111/j.0105-2896.2005.00249.x
  • Thi-Qar IIN. Investigate the relation between CTLA-4 gene polymorphisms and insulin dependent diabetes mellitus (IDDM) type I in Thi-Qar Population. Int J Med Pharm Sci. 2014;4(6):45–54.