238
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effect of Shuangdan Mingmu Capsule on Diabetic Retinopathy in Rats via Regulation of miRNAs

ORCID Icon, , , , &
Pages 3181-3194 | Received 22 Jun 2022, Accepted 06 Oct 2022, Published online: 19 Oct 2022

References

  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–136. doi:10.1016/S0140-6736(09)62124-3
  • Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–564. doi:10.2337/dc11-1909
  • Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–186. doi:10.1016/j.preteyeres.2015.08.001
  • Chaoxiu Q, Xuhua T, Qigen L, Xiaoli W. Clinical study of compound Danshen dripping pills in the treatment of diabetic retinopathy. Chine Materia Medica. 2007;3:375–377. doi:10.13863/j.issn1001-4454.2007.03.045
  • Min Z. Effects of Ginkgo biloba extract tablets on diabetic retinopathy and pharmacological analysis. Chine Med Guide. 2020;18(12):197–198. doi:10.15912/j.cnki.gocm.2020.12.095
  • Guoqiang G, Wenzhong Y. Clinical study of Yiqi Yangyin Huoxue Tang assisting Conbercept for diabetic retinopathy complicated with vitreous hemorrhage. New Chine Med. 2022;54(3):75–79. doi:10.13457/j.cnki.jncm.2022.03.016
  • Nie F, Yan J, Ling Y, et al. Effect of Shuangdan Mingmu capsule, a Chinese herbal formula, on oxidative stress-induced apoptosis of pericytes through PARP/GAPDH pathway. BMC Complement Med Ther. 2021;21(1):118. doi:10.1186/s12906-021-03238-w
  • Chaojun F, Yongwang Z, Yanjun L, et al. Effects of Shuangdan Mingmu Capsule on the expressions of Spred-1 and VEGF in the retina of rats with diabetic retinopathy. China J New Drugs. 2019;28(23):2893–2898. doi:10.3969/j.issn.1003-3734.2019.23.017
  • Jun P, Kun P, Zheng-Rong L, Yu-Hui Q, Qing-Hua P. Effects of Shuang Dan Ming Mu Capsule on expression of VEGF-a, VEGF-b, VEGF-c and the VEGF receptor, Flk-1, in diabetic retinopathy rats. Digital Chine Med. 2018;1(3):548.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi:10.1016/S0092-8674(04)00045-5
  • Gong Q, Su G. Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep. 2017;37(6):BSR20171157. doi:10.1042/BSR20171157
  • Xiong F, Du X, Hu J, Li T, Du S, Wu Q. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis. Curr Eye Res. 2014;39(7):720–729. doi:10.3109/02713683.2013.872280
  • Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin Ther Targets. 2018;22(2):153–160. doi:10.1080/14728222.2018.1420168
  • Satari M, Aghadavod E, Mirhosseini N, Asemi Z. The effects of microRNAs in activating neovascularization pathways in diabetic retinopathy. J Cell Biochem. 2019;120(6):9514–9521. doi:10.1002/jcb.28227
  • Ye EA, Steinle JJ. miR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators Inflamm. 2016;2016:3958453. doi:10.1155/2016/3958453
  • Li HL, Hao GM, Tang SJ, et al. HuoXue JieDu formula improves diabetic retinopathy in rats by regulating microRNAs. J Ethnopharmacol. 2021;268:113616. doi:10.1016/j.jep.2020.113616
  • Deng W, Huang D, Xie H, et al. Danhong injection represses diabetic retinopathy and nephropathy advancement in diabetic mice by upregulating microRNA-30d-5p and targeting JAK1. Bioengineered. 2022;13(4):8187–8200. doi:10.1080/21655979.2021.2006964
  • Dai C, Jiang S, Chu C, Xin M, Song X, Zhao B. Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145. Exp Mol Pathol. 2019;106:123–130. doi:10.1016/j.yexmp.2019.01.002
  • Li L, Li YL, Zhou YF, et al. Jiangtang Xiaozhi Recipe prevents diabetic retinopathy in streptozotocin-induced diabetic rats. Chin J Integr Med. 2017;23(6):425–432. doi:10.1007/s11655-016-2595-x
  • Shuyun X, Rulian B, Xiu C. The second edition of ”Pharmacological Experiment Methodology” was published. Chin Pharmacological Bulletin. 1992;1:19.
  • Hongping L, Yuhui Q, Zhengrong L, Yuhong W, Rong Y. Analysis of chemical constituents of Shuangdan Mingmu capsule by UPLC-Q-TOF. Chine Patent Med. 2017;39(07):1527–1531. doi:10.3969/j.issn.1001-1528.2017.07.046)
  • Hongping L, Yuhui Q, Zhengrong L, Yuhong W, Rong Y. UPLC-Q-TOF-MS analysis of blood components of Shuangdanmingmu capsule. Chin Proprietary Med. 2017;39(10):2204–2206. doi:10.3969/j.issn.1001-1528.2017.10.049
  • Gene T. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019;47(D1):D330–D338. doi:10.1093/nar/gky1055
  • Dianwei M, Xuejun X, Jing L, Mei Z. Effects of Bushen Huoxue Recipe on PEDF and VEGF in retinal Müller cells under AGEs/hypoxic conditions. China J Traditional Chine Med Ophthalmol. 2021;31(03):157–163. doi:10.13444/j.cnki.zgzyykzz.2021.03.001
  • Gao D, Guo Y, Li X, et al. An aqueous extract of Radix Astragali, Angelica sinensis, and Panax notoginseng is effective in preventing diabetic retinopathy. Evid Based Complement Alternat Med. 2013;2013:578165. doi:10.1155/2013/578165
  • Gao D, Li Q, Li Y, et al. Antidiabetic and antioxidant effects of oleanolic acid from Ligustrum lucidum Ait in alloxan-induced diabetic rats. Phytother Res. 2009;23(9):1257–1262. doi:10.1002/ptr.2603
  • Lee SI, Oh SH, Park KY, Park BH, Kim JS, Kim SD. Antihyperglycemic effects of fruits of privet (Ligustrum obtusifolium) in streptozotocin-induced diabetic rats fed a high fat diet. J Med Food. 2009;12(1):109–117. doi:10.1089/jmf.2007.0000
  • Wu J, Ke X, Fu W, et al. Inhibition of hypoxia-induced retinal angiogenesis by Specnuezhenide, an effective constituent of Ligustrum lucidum Ait., through suppression of the HIF-1α/VEGF signaling pathway. Molecules. 2016;21(12):1756. doi:10.3390/molecules21121756
  • Feng L, Zhai YY, Xu J, et al. A review on traditional uses, phytochemistry and pharmacology of Eclipta prostrata (L.). L J Ethnopharmacol. 2019;245:112109. doi:10.1016/j.jep.2019.112109
  • Ananthi J, Prakasam A, Pugalendi KV. Antihyperglycemic activity of Eclipta alba leaf on alloxan-induced diabetic rats. Yale J Biol Med. 2003;76(3):97–102.
  • Jaiswal N, Bhatia V, Srivastava SP, Srivastava AK, Tamrakar AK. Antidiabetic effect of Eclipta alba associated with the inhibition of alpha-glucosidase and aldose reductase. Nat Prod Res. 2012;26(24):2363–2367. doi:10.1080/14786419.2012.662648
  • Yang CY, Wang J, Zhao Y, et al. Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components. J Ethnopharmacol. 2010;130(2):231–236. doi:10.1016/j.jep.2010.04.039
  • Xu C, Wang W, Wang B, et al. Analytical methods and biological activities of Panax notoginseng saponins: recent trends. J Ethnopharmacol. 2019;236:443–465. doi:10.1016/j.jep.2019.02.035
  • Xie Z, Loi Truong T, Zhang P, Xu F, Xu X, Li P. Dan-Qi prescription ameliorates insulin resistance through overall corrective regulation of glucose and fat metabolism. J Ethnopharmacol. 2015;172:70–79. doi:10.1016/j.jep.2015.05.041
  • Qian S, Huo D, Wang S, Qian Q. Inhibition of glucose-induced vascular endothelial growth factor expression by Salvia miltiorrhiza hydrophilic extract in human microvascular endothelial cells: evidence for mitochondrial oxidative stress. J Ethnopharmacol. 2011;137(2):985–991. doi:10.1016/j.jep.2011.07.018
  • Lu TC, Wu YH, Chen WY, Hung YC. Targeting oxidative stress and endothelial dysfunction using Tanshinone IIA for the treatment of tissue inflammation and fibrosis. Oxid Med Cell Longev. 2022;2022:2811789. doi:10.1155/2022/2811789
  • Ma S, Zhang D, Lou H, Sun L, Ji J. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages. J Ethnopharmacol. 2016;188:193–199. doi:10.1016/j.jep.2016.05.018
  • Feng H, He Y, La L, et al. The flavonoid-enriched extract from the root of Smilax China L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway. J Ethnopharmacol. 2020;256:112785. doi:10.1016/j.jep.2020.112785
  • Akhtar MS, Iqbal J. Evaluation of the hypoglycaemic effect of Achyranthes aspera in normal and alloxan-diabetic rabbits. J Ethnopharmacol. 1991;31(1):49–57. doi:10.1016/0378-8741(91)90143-2
  • Wang D, Li C, Fan W, Yi T, Wei A, Ma Y. Hypoglycemic and hypolipidemic effects of a polysaccharide from Fructus Corni in streptozotocin-induced diabetic rats. Int J Biol Macromol. 2019;133:420–427. doi:10.1016/j.ijbiomac.2019.04.160
  • Alharazi WZ, McGowen A, Rose P, Jethwa PH. Could consumption of yam (Dioscorea) or its extract be beneficial in controlling glycaemia: a systematic review. Br J Nutr. 2021;128(4):1–12.
  • Lau CH, Chan CM, Chan YW, et al. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine. 2007;14(11):778–784. doi:10.1016/j.phymed.2007.01.007
  • Torus B, Korkmaz H, Ozturk KH, et al. Downregulation of plasma microRNA-29c-3p expression may be a new risk factor for diabetic retinopathy. Minerva Endocrinol. 2020. doi:10.23736/S0391-1977.20.03278-2
  • Kovacs B, Lumayag S, Cowan C, Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2011;52(7):4402–4409. doi:10.1167/iovs.10-6879
  • Chen X, Zeng K, Xu M, et al. P53-induced miR-1249 inhibits tumor growth, metastasis, and angiogenesis by targeting VEGFA and HMGA2. Cell Death Dis. 2019;10(2):131. doi:10.1038/s41419-018-1188-3
  • Wang Y, Li M, Chen L, et al. Natural killer cell-derived exosomal miR-1249-3p attenuates insulin resistance and inflammation in mouse models of type 2 diabetes. Signal Transduct Target Ther. 2021;6(1):409. doi:10.1038/s41392-021-00805-y
  • Massaro JD, Polli CD, Costa E Silva M, et al. Post-transcriptional markers associated with clinical complications in Type 1 and Type 2 diabetes mellitus. Mol Cell Endocrinol. 2019;490:1–14. doi:10.1016/j.mce.2019.03.008
  • Yan S, Wang T, Huang S, et al. Differential expression of microRNAs in plasma of patients with prediabetes and newly diagnosed type 2 diabetes. Acta Diabetol. 2016;53(5):693–702. doi:10.1007/s00592-016-0837-1
  • Peipei N, Yanan G. Relationship between hsa-miR-1249 and hsa-miR-486-5p and type 2 diabetes mellitus. Acta Laser Biol. 2016;25(3):240–243.
  • Wang G, Wu B, Zhang B, Wang K, Wang H. LncRNA CTBP1-AS2 alleviates high glucose-induced oxidative stress, ECM accumulation, and inflammation in diabetic nephropathy via miR-155-5p/FOXO1 axis. Biochem Biophys Res Commun. 2020;532(2):308–314. doi:10.1016/j.bbrc.2020.08.073
  • He J, Zhang R, Wang S, et al. Expression of microRNA-155-5p in patients with refractory diabetic macular edema and its regulatory mechanism. Exp Ther Med. 2021;22(3):975. doi:10.3892/etm.2021.10407
  • Huang Z, Mou T, Luo Y, et al. Inhibition of miR-450b-5p ameliorates hepatic ischemia/reperfusion injury via targeting CRYAB. Cell Death Dis. 2020;11(6):455. doi:10.1038/s41419-020-2648-0
  • Gong X, Zhu L, Liu J, et al. MIR3142HG promotes lipopolysaccharide-induced acute lung injury by regulating miR-450b-5p/HMGB1 axis. Mol Cell Biochem. 2021;476(12):4205–4215. doi:10.1007/s11010-021-04209-y
  • Cao YL, Liu DJ, Zhang HG. MiR-7 regulates the PI3K/AKT/VEGF pathway of retinal capillary endothelial cell and retinal pericytes in diabetic rat model through IRS-1 and inhibits cell proliferation. Eur Rev Med Pharmacol Sci. 2018;22(14):4427–4430. doi:10.26355/eurrev_201807_15493
  • Ao H, Li H, Zhao X, Liu B, Lu L. TXNIP positively regulates the autophagy and apoptosis in the rat müller cell of diabetic retinopathy. Life Sci. 2021;267:118988. doi:10.1016/j.lfs.2020.118988
  • Zeng J, Zhao H, Chen B. DJ-1/PARK7 inhibits high glucose-induced oxidative stress to prevent retinal pericyte apoptosis via the PI3K/AKT/mTOR signaling pathway. Exp Eye Res. 2019;189:107830. doi:10.1016/j.exer.2019.107830
  • Qiu F, Tong H, Wang Y, Tao J, Wang H, Chen L. Recombinant human maspin inhibits high glucose-induced oxidative stress and angiogenesis of human retinal microvascular endothelial cells via PI3K/AKT pathway. Mol Cell Biochem. 2018;446(1–2):127–136. doi:10.1007/s11010-018-3280-5
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. doi:10.1128/MMBR.00031-10
  • Pearson G, Robinson F, Beers GT, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–183. doi:10.1210/edrv.22.2.0428
  • Cervellini I, Galino J, Zhu N, Allen S, Birchmeier C, Bennett DL. Sustained MAPK/ERK activation in adult Schwann cells impairs nerve repair. J Neurosci. 2018;38(3):679–690. doi:10.1523/JNEUROSCI.2255-17.2017
  • El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol. 2006;168(1):235–244. doi:10.2353/ajpath.2006.050500