473
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Current Strategies and Potential Prospects for Nanoparticle-Mediated Treatment of Diabetic Nephropathy

, , , & ORCID Icon
Pages 2653-2673 | Published online: 31 Aug 2022

References

  • Zhao H, Cui Y, Dong F, et al. lncRNA MSC-AS1 aggravates diabetic nephropathy by regulating the miR-325/CCNG1 axis. J Healthc Eng. 2022;2022:2279072. doi:10.1155/2022/2279072
  • Manazir S, Durrani HM, Jawed F, et al. Concurrent presentation of diabetic nephropathy and type 1 diabetes mellitus in a pediatric patient. Cureus. 2021;13(12):e20831. doi:10.7759/cureus.20831
  • Allen A, Iqbal Z, Green-Saxena A, et al. Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2022;10(1):e002560. doi:10.1136/bmjdrc-2021-002560
  • Wang G, Li Q, Chen D, et al. Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake. Theranostics. 2019;9(21):6191–6208. doi:10.7150/thno.37538
  • Nossier AI, Shehata NI, Morsy SM, et al. Determination of certain urinary microRNAs as promising biomarkers in diabetic nephropathy patients using gold nanoparticles. Anal Biochem. 2020;609:113967. doi:10.1016/j.ab.2020.113967
  • Xiong W, Xiong SH, Chen QL, et al. Brij-functionalized chitosan nanocarrier system enhances the intestinal permeability of P-glycoprotein substrate-like drugs. Carbohydr Polym. 2021;266:118112. doi:10.1016/j.carbpol.2021.118112
  • Lin S, Yang J, Wu G, et al. Preventive effect of taurine on experimental type II diabetic nephropathy. J Biomed Sci. 2010;17(Suppl 1):S46. doi:10.1186/1423-0127-17-S1-S46
  • Meng X, Ma J, Kang AN, et al. A novel approach based on metabolomics coupled with intestinal flora analysis and network pharmacology to explain the mechanisms of action of bekhogainsam decoction in the improvement of symptoms of streptozotocin-induced diabetic nephropathy in mice. Front Pharmacol. 2020;11:633. doi:10.3389/fphar.2020.00633
  • Ghavimishamekh A, Ziamajidi N, Dehghan A, et al. Study of insulin-loaded chitosan nanoparticle effects on TGF-beta1 and fibronectin expression in kidney tissue of type 1 diabetic rats. Indian J Clin Biochem. 2019;34(4):418–426. doi:10.1007/s12291-018-0771-9
  • Tsai JL, Chen C-H, Wu M-J, et al. New approaches to diabetic nephropathy from bed to bench. Biomedicines. 2022;10(4):876. doi:10.3390/biomedicines10040876
  • Banu S, Jabir NR, Manjunath NC, et al. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J Biol Sci. 2015;22(1):32–36. doi:10.1016/j.sjbs.2014.04.005
  • Hernandez LF, Eguchi N, Whaley D, et al. Anti-oxidative therapy in diabetic nephropathy. Front Biosci. 2022;14(2):14. doi:10.31083/j.fbs1402014
  • Morse E, Schroth J, You Y-H, et al. TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1. Am J Physiol Renal Physiol. 2010;299(5):F965–72. doi:10.1152/ajprenal.00236.2010
  • Roe ND, Ren J. Oxidative activation of Ca(2+)/calmodulin-activated kinase II mediates ER stress-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol. 2013;304(6):H828–39. doi:10.1152/ajpheart.00752.2012
  • Kang K, Tarchick MJ, Yu X, et al. Carnosic acid slows photoreceptor degeneration in the Pde6b(rd10) mouse model of retinitis pigmentosa. Sci Rep. 2016;6:22632. doi:10.1038/srep22632
  • Samsu N, Bellini MI. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449. doi:10.1155/2021/1497449
  • Xu Z, Zhang M, Wang Y, et al. Gentiopicroside ameliorates diabetic renal tubulointerstitial fibrosis via inhibiting the AT1R/CK2/NF-κB pathway. Front Pharmacol. 2022;13:848915. doi:10.3389/fphar.2022.848915
  • Wang J, Zhang L, Qin W, et al. Near-infrared probe for early diagnosis of diabetic complications-nephropathy and in vivo visualization fluorescence imaging research. Anal Chim Acta. 2022;1221:340147. doi:10.1016/j.aca.2022.340147
  • Zakiyanov O, Kalousová M, Zima T, et al. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem. 2021;105:141–212. doi:10.1016/bs.acc.2021.02.003
  • Tuttle KR, Wong L, St. Peter W, et al. Moving from evidence to implementation of breakthrough therapies for diabetic kidney disease. Clin J Am Soc Nephrol. 2022;17(7):1092–1103. doi:10.2215/CJN.02980322
  • Yu B, Wu K, Xu X, et al. Recent advances in nanoplatforms for the treatment of neuropathic pain. Spinal Cord. 2022;60(7):594–603. doi:10.1038/s41393-021-00746-x
  • Lin B, Ma YY, Wang JW. Nano-technological approaches for targeting kidney diseases with focus on diabetic nephropathy: recent progress, and future perspectives. Front Bioeng Biotechnol. 2022;10:870049. doi:10.3389/fbioe.2022.870049
  • Wu K, Yu B, Li D, et al. Recent advances in nanoplatforms for the treatment of osteosarcoma. Front Oncol. 2022;12:805978. doi:10.3389/fonc.2022.805978
  • Juszkiewicz K, Sikorski AF, Czogalla A. Building blocks to design liposomal delivery systems. Int J Mol Sci. 2020;21(24):9559. doi:10.3390/ijms21249559
  • AlSawaftah NM, Awad NS, Paul V, et al. Transferrin-modified liposomes triggered with ultrasound to treat HeLa cells. Sci Rep. 2021;11(1):11589. doi:10.1038/s41598-021-90349-6
  • Fonseca-Gomes J, Loureiro JA, Tanqueiro SR, et al. In vivo bio-distribution and toxicity evaluation of polymeric and lipid-based nanoparticles: a potential approach for chronic diseases treatment. Int J Nanomedicine. 2020;15:8609–8621. doi:10.2147/IJN.S267007
  • Musielak E, Feliczak-Guzik A, Nowak I. Optimization of the conditions of solid lipid nanoparticles (SLN) synthesis. Molecules. 2022;27(7):2202.
  • Akhtar A, Wang S, Ghali L, et al. Effective delivery of arsenic trioxide to HPV-positive cervical cancer cells using optimised liposomes: a size and charge study. Int J Mol Sci. 2018;19(4):1081. doi:10.3390/ijms19041081
  • De Geest B, Mishra M. Role of oxidative stress in diabetic cardiomyopathy. Antioxidants. 2022;11(4):784. doi:10.3390/antiox11040784
  • Chen W, Feng L, Shen Y, et al. Myricitrin inhibits acrylamide-mediated cytotoxicity in human Caco-2 cells by preventing oxidative stress. Biomed Res Int. 2013;2013:724183. doi:10.1155/2013/724183
  • Ahangarpour A, Oroojan AA, Khorsandi L, et al. Antioxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide-induced diabetic nephropathy in type 2 diabetic male mice. Iran J Basic Med Sci. 2019;22(12):1424–1431. doi:10.22038/IJBMS.2019.13989
  • Xu ZJ, Shu S, Li ZJ, et al. Liuwei Dihuang pill treats diabetic nephropathy in rats by inhibiting of TGF-beta/SMADS, MAPK, and NF-kB and upregulating expression of cytoglobin in renal tissues. Medicine. 2017;96(3):e5879. doi:10.1097/MD.0000000000005879
  • Du B, Yan Y, Li Y, et al. Preparation and passive target of 5-fluorouracil solid lipid nanoparticles. Pharm Dev Technol. 2009;00(00):090921101957048. doi:10.1080/10837450903246390
  • Wang Z, Shi J, Pan H, et al. Membrane-cloaked polydopamine modified mesoporous silica nanoparticles for cancer therapy. Nanotechnology. 2022;33(34):345101. doi:10.1088/1361-6528/ac6fee
  • Ghorbani A, Amiri MS, Hosseini A. Pharmacological properties of Rheum turkestanicum Janisch. Heliyon. 2019;5(6):e01986. doi:10.1016/j.heliyon.2019.e01986
  • Chen D, Han S, Zhu Y, et al. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nanomedicine. 2018;13:3507–3527. doi:10.2147/IJN.S166445
  • Wu W, Zu Y, Wang L, et al. Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique. Drug Deliv. 2017;24(1):1713–1720. doi:10.1080/10717544.2017.1399302
  • Li P, Bukhari SNA, Khan T, et al. apigenin-loaded solid lipid nanoparticle attenuates diabetic nephropathy induced by streptozotocin nicotinamide through Nrf2/HO-1/NF-kB signalling pathway. Int J Nanomedicine. 2020;15:9115–9124. doi:10.2147/IJN.S256494
  • van Alem CMA, Metselaar JM, van Kooten C, et al. Recent advances in liposomal-based anti-inflammatory therapy. Pharmaceutics. 2021;13(7):1004. doi:10.3390/pharmaceutics13071004
  • Deng W, Chen W, Clement S, et al. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat Commun. 2018;9(1):2713. doi:10.1038/s41467-018-05118-3
  • Wu S, Helal-Neto E, Matos APDS, et al. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv. 2020;27(1):1544–1561. doi:10.1080/10717544.2020.1837296
  • Li X, Wang Y, Feng C, et al. Chemical modification of chitosan for developing cancer nanotheranostics. Biomacromolecules. 2022;23:2197–2218.
  • Yamabe N, Yokozawa T, Oya T, et al. Therapeutic Potential of (-)-Epigallocatechin 3- O -Gallate on Renal Damage in Diabetic Nephropathy Model Rats. J Pharmacol Exp Ther. 2006;319(1):228–236. doi:10.1124/jpet.106.107029
  • Gordon Still J. Development of oral insulin: progress and current status. Diabetes Metab Res Rev. 2002;18(Suppl 1):S29–37. doi:10.1002/dmrr.207
  • Li Z, Li X, Cao Z, et al. Camptothecin nanocolloids based on N,N,N-trimethyl chitosan: efficient suppression of growth of multiple myeloma in a murine model. Oncol Rep. 2012;27(4):1035–1040. doi:10.3892/or.2012.1635
  • Asal HA, Shoueir KR, El-Hagrasy MA, et al. Controlled synthesis of in-situ gold nanoparticles onto chitosan functionalized PLGA nanoparticles for oral insulin delivery. Int J Biol Macromol. 2022;209:2188–2196. doi:10.1016/j.ijbiomac.2022.04.200
  • Mukhopadhyay P, Sarkar K, Chakraborty M, et al. Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model. Mater Sci Eng C Mater Biol Appl. 2013;33(1):376–382. doi:10.1016/j.msec.2012.09.001
  • Khan N, Bharali DJ, Adhami VM, et al. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis. 2014;35(2):415–423. doi:10.1093/carcin/bgt321
  • Abd El-Hameed AM. Polydatin-loaded chitosan nanoparticles ameliorates early diabetic nephropathy by attenuating oxidative stress and inflammatory responses in streptozotocin-induced diabetic rat. J Diabetes Metab Disord. 2020;19(2):1599–1607. doi:10.1007/s40200-020-00699-7
  • Kim HR, Jung WK, Park S-B, et al. Polydatin alleviates diabetes-induced hyposalivation through anti-glycation activity in db/db mouse. Pharmaceutics. 2021;14(1):51. doi:10.3390/pharmaceutics14010051
  • Latos-Brozio M, Masek A. The application of (+)-catechin and polydatin as functional additives for biodegradable polyesters. Int J Mol Sci. 2020;21(2):414.
  • Nagpal K, Singh SK, Mishra DN. Optimization of brain targeted chitosan nanoparticles of Rivastigmine for improved efficacy and safety. Int J Biol Macromol. 2013;59:72–83. doi:10.1016/j.ijbiomac.2013.04.024
  • Li Y, Chen X, Chen Y, et al. Berberine improves TNF-alpha-induced hepatic insulin resistance by targeting MEKK1/MEK pathway. Inflammation. 2022;22:1.
  • Zhang B, Zhang X, Zhang C, et al. Berberine improves the protective effects of metformin on diabetic nephropathy in db/db mice through Trib1-dependent inhibiting inflammation. Pharm Res. 2021;38(11):1807–1820. doi:10.1007/s11095-021-03104-x
  • Yu M, Alimujiang M, Hu L, et al. Berberine alleviates lipid metabolism disorders via inhibition of mitochondrial complex I in gut and liver. Int J Biol Sci. 2021;17(7):1693–1707. doi:10.7150/ijbs.54604
  • Agrahari V, Meng J, Purohit SS, et al. Real-time analysis of tenofovir release kinetics using quantitative phosphorus ((31)P) nuclear magnetic resonance spectroscopy. J Pharm Sci. 2017;106(10):3005–3015. doi:10.1016/j.xphs.2017.03.043
  • Mi Y, Tan W, Zhang J, et al. Modification of hydroxypropyltrimethyl ammonium chitosan with organic acid: synthesis, characterization, and antioxidant activity. Polymers. 2020;12(11):2460. doi:10.3390/polym12112460
  • Wang W, Meng Q, Li Q, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020;21(2):487.
  • Gieldowska M, Puchalski M, Szparaga G, et al. Investigation of the influence of PLA molecular and supramolecular structure on the kinetics of thermal-supported hydrolytic degradation of wet spinning fibres. Materials. 2020;13(9):2111. doi:10.3390/ma13092111
  • Ambalavanan R, John AD, Selvaraj AD. Nano-encapsulated Tinospora cordifolia (Willd.) using poly (D, L-lactide) nanoparticles reduce effective control in streptozotocin-induced type 2 diabetic rats. IET Nanobiotechnol. 2020;14(9):803–808. doi:10.1049/iet-nbt.2020.0085
  • Xiong XY, Li QH, Li YP, et al. Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery. Colloids Surf B Biointerfaces. 2013;111:282–288. doi:10.1016/j.colsurfb.2013.06.019
  • Mohamed EA, Zhao Y, Meshali MM, et al. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine. J Pharm Sci. 2012;101(10):3787–3798. doi:10.1002/jps.23265
  • De Marchi JGB, Cé R, Onzi G, et al. IgG functionalized polymeric nanoparticles for oral insulin administration. Int J Pharm. 2022;622:121829. doi:10.1016/j.ijpharm.2022.121829
  • Alajmi MF, Mothana RA, Al-Rehaily AJ, et al. Antimycobacterial activity and safety profile assessment of alpinia galanga and tinospora cordifolia. Evid Based Complement Alternat Med. 2018;2018:2934583. doi:10.1155/2018/2934583
  • Ambalavanan R, John AD, Selvaraj AD. Nephroprotective role of nanoencapsulated Tinospora cordifolia (Willd.) using polylactic acid nanoparticles in streptozotocin-induced diabetic nephropathy rats. IET Nanobiotechnol. 2021;15(4):411–417. doi:10.1049/nbt2.12030
  • Pal PB, Sinha K, Sil PC, Srinivasula SM. Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFalpha related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats. PLoS One. 2014;9(9):e107220. doi:10.1371/journal.pone.0107220
  • Da Silva J, Jesus S, Bernardi N, et al. Poly(D,L-lactic acid) nanoparticle size reduction increases its immunotoxicity. Front Bioeng Biotechnol. 2019;7:137. doi:10.3389/fbioe.2019.00137
  • Sunoqrot S, Alfaraj M, Hammad AM, et al. Development of a thymoquinone polymeric anticancer nanomedicine through optimization of polymer molecular weight and nanoparticle architecture. Pharmaceutics. 2020;12(9):811. doi:10.3390/pharmaceutics12090811
  • Sekhon BS, Kamboj SR. Inorganic nanomedicine–part 1. Nanomedicine. 2010;6(4):516–522. doi:10.1016/j.nano.2010.04.004
  • Simmons KM, Michels AW. Type 1 diabetes: a predictable disease. World J Diabetes. 2015;6(3):380–390. doi:10.4239/wjd.v6.i3.380
  • Luo B, Wen S, Chen Y-C, et al. LOX-1-targeted iron oxide nanoparticles detect early diabetic nephropathy in db/db mice. Mol Imaging Biol. 2015;17(5):652–660. doi:10.1007/s11307-015-0829-5
  • Dubreil C, Sainte Catherine O, Lalatonne Y, et al. Tolerogenic iron oxide nanoparticles in type 1 diabetes: biodistribution and pharmacokinetics studies in nonobese diabetic mice. Small. 2018;14(40):e1802053. doi:10.1002/smll.201802053
  • An L, Tao Q, Wu Y, et al. Synthesis of SPIO nanoparticles and the subsequent applications in stem cell labeling for parkinson’s disease. Nanoscale Res Lett. 2021;16(1):107. doi:10.1186/s11671-021-03540-z
  • Dominguez JH, Mehta JL, Li D, et al. Anti-LOX-1 therapy in rats with diabetes and dyslipidemia: ablation of renal vascular and epithelial manifestations. Am J Physiol Renal Physiol. 2008;294(1):F110–9. doi:10.1152/ajprenal.00013.2007
  • Liu X, Du H, Sun Y, et al. Role of abnormal energy metabolism in the progression of chronic kidney disease and drug intervention. Ren Fail. 2022;44(1):790–805. doi:10.1080/0886022X.2022.2072743
  • Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018;592(5):728–742. doi:10.1002/1873-3468.12956
  • Adhikari A, Mondal S, Chatterjee T, et al. Redox nanomedicine ameliorates chronic kidney disease (CKD) by mitochondrial reconditioning in mice. Commun Biol. 2021;4(1):1013. doi:10.1038/s42003-021-02546-8
  • Shaik MR, Syed R, Adil SF, et al. Mn3O4 nanoparticles: synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi J Biol Sci. 2021;28(2):1196–1202. doi:10.1016/j.sjbs.2020.11.087
  • Adhikari A, Polley N, Darbar S, et al. Citrate functionalized Mn(3)O(4) in nanotherapy of hepatic fibrosis by oral administration. Future Sci OA. 2016;2(4):Fso146. doi:10.4155/fsoa-2016-0029
  • Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018;2018:1062562. doi:10.1155/2018/1062562
  • Cao L, Kiely J, Piano M, et al. Facile and inexpensive fabrication of zinc oxide based bio-surfaces for C-reactive protein detection. Sci Rep. 2018;8(1):12687. doi:10.1038/s41598-018-30793-z
  • Abd El-Khalik SR, Ragab S, Nasif E, et al. The prospective ameliorative role of zinc oxide nanoparticles in STZ-induced diabetic nephropathy in rats: mechanistic targeting of autophagy and regulating Nrf2/TXNIP/NLRP3 inflammasome signaling. Biol Trace Elem Res. 2022;200(4):1677–1687. doi:10.1007/s12011-021-02773-4
  • Ashraf JM, Ansari MA, Fatma S, et al. Inhibiting effect of zinc oxide nanoparticles on advanced glycation products and oxidative modifications: a potential tool to counteract oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2018;55(9):7438–7452.
  • Umrani RD, Paknikar KM. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine. 2014;9(1):89–104. doi:10.2217/nnm.12.205
  • Alomari G, Al‐Trad B, Hamdan S, et al. Alleviation of diabetic nephropathy by zinc oxide nanoparticles in streptozotocin-induced type 1 diabetes in rats. IET Nanobiotechnol. 2021;15(5):473–483. doi:10.1049/nbt2.12026
  • Rahman HS, Othman HH, Abdullah R, et al. Beneficial and toxicological aspects of zinc oxide nanoparticles in animals. Vet Med Sci. 2022;8(4):1769–1779. doi:10.1002/vms3.814
  • Turan O, Bielecki P, Perera V, et al. Delivery of drugs into brain tumors using multicomponent silica nanoparticles. Nanoscale. 2019;11(24):11910–11921. doi:10.1039/C9NR02876E
  • Nuthalapati S, Shirhatti V, Kedambaimoole V, et al. Highly sensitive, scalable reduced graphene oxide with palladium nano-composite as strain sensor. Nanotechnology. 2020;31(3):035501. doi:10.1088/1361-6528/ab4855
  • Guo H, Wu B, Cui H, et al. NiCl2-down-regulated antioxidant enzyme mRNA expression causes oxidative damage in the broiler(‘)s kidney. Biol Trace Elem Res. 2014;162(1–3):288–295. doi:10.1007/s12011-014-0132-3
  • Ceriello A, Testa R. Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes Care. 2009;32(Suppl 2):S232–6. doi:10.2337/dc09-S316
  • Tong Y, Zhang L, Gong R, et al. A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy. Nanoscale. 2020;12(46):23607–23619. doi:10.1039/D0NR06098D
  • Mohammadpour R, Cheney DL, Grunberger JW, et al. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. J Control Release. 2020;324:471–481. doi:10.1016/j.jconrel.2020.05.027
  • Schoneborn M, Harmening T, Giménez-Mañogil J, et al. Improved NOx storage/release properties of ceria-based lean NOx trap compositions with MnOx modification. Materials. 2019;12(13):2127. doi:10.3390/ma12132127
  • Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010;12(7):2313–2333. doi:10.1007/s11051-010-9911-8
  • Manna K, Mishra S, Saha M, et al. Amelioration of diabetic nephropathy using pomegranate peel extract-stabilized gold nanoparticles: assessment of NF-κB and Nrf2 signaling system. Int J Nanomedicine. 2019;14:1753–1777. doi:10.2147/IJN.S176013
  • Gandhi S, Srinivasan BP, Akarte AS. An experimental assessment of toxic potential of nanoparticle preparation of heavy metals in streptozotocin induced diabetes. Exp Toxicol Pathol. 2013;65(7–8):1127–1135. doi:10.1016/j.etp.2013.05.004
  • Hamzawy MA, Salem HF, Mohammed SA, et al. Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv. 2017;24(1):599–607. doi:10.1080/10717544.2016.1247924
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–327. doi:10.1002/smll.200400093
  • Alomari G, Al-Trad B, Hamdan S, et al. Gold nanoparticles attenuate albuminuria by inhibiting podocyte injury in a rat model of diabetic nephropathy. Drug Deliv Transl Res. 2020;10(1):216–226. doi:10.1007/s13346-019-00675-6
  • Al-Trad B, Aljabali A, Al-Zoubi M, et al. Effect of gold nanoparticles treatment on the testosterone-induced benign prostatic hyperplasia in rats. Int J Nanomedicine. 2019;14:3145–3154. doi:10.2147/IJN.S202645
  • Xia Q, Huang J, Feng Q, et al. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine. 2019;14:6957–6970. doi:10.2147/IJN.S214008
  • Wang YY, Tang LQ, Wei W. Berberine attenuates podocytes injury caused by exosomes derived from high glucose-induced mesangial cells through TGFbeta1-PI3K/AKT pathway. Eur J Pharmacol. 2018;824:185–192. doi:10.1016/j.ejphar.2018.01.034
  • Chen X, Sun L, Li D, et al. Green tea peptides ameliorate diabetic nephropathy by inhibiting the TGF-beta/Smad signaling pathway in mice. Food Funct. 2022;13(6):3258–3270. doi:10.1039/D1FO03615G
  • Wu D, Peng F, Zhang B, et al. PKC-beta1 mediates glucose-induced Akt activation and TGF-beta1 upregulation in mesangial cells. J Am Soc Nephrol. 2009;20(3):554–566. doi:10.1681/ASN.2008040445
  • Eissa S, Matboli M, Aboushahba R, et al. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J Diabetes Complications. 2016;30(8):1585–1592. doi:10.1016/j.jdiacomp.2016.07.012
  • Jiang Y, Shi M, Liu Y, et al. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew Chem Int Ed Engl. 2017;56(39):11916–11920. doi:10.1002/anie.201703807
  • Varkonyi-Gasic E, Wu R, Wood M, et al. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007;3(1):12. doi:10.1186/1746-4811-3-12
  • Kheybari S, Samadi N, Hosseini SV, et al. Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method. Daru. 2010;18(3):168–172.
  • Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol. 2007;7(6):454–465. doi:10.1038/nri2093
  • Elekofehinti OO, Oyedokun VO, Iwaloye O, et al. Momordica charantia silver nanoparticles modulate SOCS/JAK/STAT and P13K/Akt/PTEN signalling pathways in the kidney of streptozotocin-induced diabetic rats. J Diabetes Metab Disord. 2021;20(1):245–260. doi:10.1007/s40200-021-00739-w
  • Zinchenko OA, Marchenko SV, Sergeyeva TA, et al. Application of creatinine-sensitive biosensor for hemodialysis control. Biosens Bioelectron. 2012;35(1):466–469. doi:10.1016/j.bios.2012.02.062
  • Narimani R, Azizi M, Esmaeili M, et al. An optimal method for measuring biomarkers: colorimetric optical image processing for determination of creatinine concentration using silver nanoparticles. Biotech. 2020;10(10):416. doi:10.1007/s13205-020-02405-z
  • Xu YM, Tan HW, Zheng W, et al. Cadmium telluride quantum dot-exposed human bronchial epithelial cells: a further study of the cellular response by proteomics. Toxicol Res. 2019;8(6):994–1001. doi:10.1039/c9tx00126c
  • Pollinger K, Hennig R, Bauer S, et al. Biodistribution of quantum dots in the kidney after intravenous injection. J Nanosci Nanotechnol. 2014;14(5):3313–3319. doi:10.1166/jnn.2014.8716
  • Smith AM, Duan H, Mohs A, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008;60(11):1226–1240. doi:10.1016/j.addr.2008.03.015
  • Barutta F, Bellini S, Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci. 2022;136(7):493–520.
  • Liu X, Hu R, Lian H, et al. Dual-color immunofluorescent labeling with quantum dots of the diabetes-associated proteins aldose reductase and Toll-like receptor 4 in the kidneys of diabetic rats. Int J Nanomedicine. 2015;10:3651–3662. doi:10.2147/IJN.S81395
  • Wang M, Abbineni G, Clevenger A, et al. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine. 2011;7(6):710–729. doi:10.1016/j.nano.2011.02.013
  • Mirnajafizadeh F, Ramsey D, McAlpine S, et al. Nanoparticles for bioapplications: study of the cytotoxicity of water dispersible CdSe(S) and CdSe(S)/ZnO quantum dots. Nanomaterials. 2019;9(3):465. doi:10.3390/nano9030465
  • Yadav D, Kwak M, Chauhan PS, et al. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol. 2022. doi:10.1016/j.semcancer.2022.02.016
  • Maslanka Figueroa S, Veser A, Abstiens K, et al. Influenza A virus mimetic nanoparticles trigger selective cell uptake. Proc Natl Acad Sci U S A. 2019;116(20):9831–9836. doi:10.1073/pnas.1902563116
  • Boulant S, Stanifer M, Lozach PY. Dynamics of virus-receptor interactions in virus binding, signaling, and endocytosis. Viruses. 2015;7(6):2794–2815. doi:10.3390/v7062747
  • Maslanka Figueroa S, Fleischmann D, Beck S, et al. Nanoparticles mimicking viral cell recognition strategies are superior transporters into mesangial cells. Adv Sci. 2020;7(11):1903204. doi:10.1002/advs.201903204
  • Fleischmann D, Harloff M, Maslanka Figueroa S, et al. Targeted delivery of Soluble Guanylate Cyclase (sGC) activator cinaciguat to renal mesangial cells via virus-mimetic nanoparticles potentiates anti-fibrotic effects by cGMP-mediated suppression of the TGF-beta pathway. Int J Mol Sci. 2021;22(5):2557. doi:10.3390/ijms22052557
  • Schinner E, Wetzl V, Schlossmann J. Cyclic nucleotide signalling in kidney fibrosis. Int J Mol Sci. 2015;16(2):2320–2351. doi:10.3390/ijms16022320
  • Sawaf H, Thomas G, Taliercio JJ, et al. Therapeutic advances in diabetic nephropathy. J Clin Med. 2022;11(2):378. doi:10.3390/jcm11020378
  • Pereira PR, Carrageta DF, Oliveira PF, et al. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med Res Rev. 2022;42(4):1518–1544. doi:10.1002/med.21883
  • Wu L, Wen W, Wang X, et al. Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Part Fibre Toxicol. 2022;19(1):24. doi:10.1186/s12989-022-00465-y
  • Almanaa TN, Aref M, Kakakhel MA, et al. Silica nanoparticle acute toxicity on male rattus norvegicus domestica: ethological behavior, hematological disorders, biochemical analyses, hepato-renal function, and antioxidant-immune response. Front Bioeng Biotechnol. 2022;10:868111. doi:10.3389/fbioe.2022.868111
  • Zhang Y, Hu B, Wang M, et al. Selenium protects against zearalenone-induced oxidative stress and apoptosis in the mouse kidney by inhibiting endoplasmic reticulum stress. Oxid Med Cell Longev. 2020;2020:6059058. doi:10.1155/2020/6059058
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–146. doi:10.1016/j.jconrel.2010.08.027