323
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Advanced Glycation End-Product Precursor Methylglyoxal May Lead to Development of Alzheimer’s Disease

, , , , & ORCID Icon
Pages 3153-3166 | Received 19 Jul 2022, Accepted 05 Oct 2022, Published online: 17 Oct 2022

References

  • Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591–604. doi:10.1038/s41574-018-0048-7
  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:a006189–a006189. doi:10.1101/cshperspect.a006189
  • Vagelatos NT, Eslick GD. Type 2 diabetes as a risk factor for Alzheimer’s disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev. 2013;35:152–160. doi:10.1093/epirev/mxs012
  • Li K, Li J, Zheng J, Qin S. Reactive astrocytes in neurodegenerative diseases. Aging Dis. 2019;10(3):664–675. doi:10.14336/AD.2018.0720
  • Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. doi:10.1007/s00401-009-0619-8
  • Phillips EC, Croft CL, Kurbatskaya K, et al. Astrocytes and neuroinflammation in Alzheimer’s disease. Biochem Soc Trans. 2014;42(5):1321–1325. doi:10.1042/BST20140155
  • Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957–967. doi:10.1016/j.immuni.2017.06.006
  • Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi:10.1038/nature21029
  • Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28(3):138–145. doi:10.1016/j.it.2007.01.005
  • Kashon ML, Ross GW, O’Callaghan JP, et al. Associations of cortical astrogliosis with cognitive performance and dementia status. J Alzheimers Dis. 2004;6(6):595–604. doi:10.3233/JAD-2004-6604
  • Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 2017;7(12):170228. doi:10.1098/rsob.170228
  • Wong DP, Chu JM, Hung VK, et al. Modulation of endoplasmic reticulum chaperone GRP78 by high glucose in hippocampus of streptozotocin-induced diabetic mice and C6 astrocytic cells. Neurochem Int. 2013;63(6):551–560. doi:10.1016/j.neuint.2013.09.010
  • Steele ML, Robinson SR. Reactive astrocytes give neurons less support: implications for Alzheimer’s disease. Neurobiol Aging. 2012;33(2):423e1–13. doi:10.1016/j.neurobiolaging.2010.09.018
  • Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products A review. Diabetologia. 2001;44(2):129–146. doi:10.1007/s001250051591
  • Srikanth V, Westcott B, Forbes J, et al. Methylglyoxal, cognitive function and cerebral atrophy in older people. J Gerontol a Biol Sci Med Sci. 2013;68(1):68–73. doi:10.1093/gerona/gls100
  • Kong X, Ma MZ, Huang K, et al. Increased plasma levels of the methylglyoxal in patients with newly diagnosed type 2 diabetes 2. J Diabetes. 2014;6(6):535–540. doi:10.1111/1753-0407.12160
  • Matafome P, Sena C, Seica R. Methylglyoxal, obesity, and diabetes. Endocrine. 2013;43(3):472–484. doi:10.1007/s12020-012-9795-8
  • Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology. 2005;15(7):16R–28R. doi:10.1093/glycob/cwi053
  • Kuhla B, Luth HJ, Haferburg D, Boeck K, Arendt T, Munch G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann N Y Acad Sci. 2005;1043:211–216. doi:10.1196/annals.1333.026
  • Huang X, Wang F, Chen W, Chen Y, Wang N, von Maltzan K. Possible link between the cognitive dysfunction associated with diabetes mellitus and the neurotoxicity of methylglyoxal. Brain Res. 2012;1469:82–91. doi:10.1016/j.brainres.2012.06.011
  • Watanabe K, Okada K, Fukabori R, et al. Methylglyoxal (MG) and cerebro-renal interaction: does long-term orally administered MG cause cognitive impairment in normal Sprague-Dawley rats? Toxins. 2014;6(1):254–269. doi:10.3390/toxins6010254
  • Chun HJ, Lee Y, Kim AH, Lee J. Methylglyoxal causes cell death in neural progenitor cells and impairs adult hippocampal neurogenesis. Neurotox Res. 2016;29(3):419–431. doi:10.1007/s12640-015-9588-y
  • Hansen F, Pandolfo P, Galland F, et al. Methylglyoxal can mediate behavioral and neurochemical alterations in rat brain. Physiol Behav. 2016;164(Pt A):93–101. doi:10.1016/j.physbeh.2016.05.046
  • Szczepanik JC, de Almeida GRL, Cunha MP, Dafre AL. Repeated methylglyoxal treatment depletes dopamine in the prefrontal cortex, and causes memory impairment and depressive-like behavior in mice. Neurochem Res. 2020;45(2):354–370. doi:10.1007/s11064-019-02921-2
  • Chu JM, Lee DK, Wong DP, Wong GT, Yue KK. Methylglyoxal-induced neuroinflammatory response in in vitro astrocytic cultures and hippocampus of experimental animals. Metab Brain Dis. 2016;31(5):1055–1064. doi:10.1007/s11011-016-9849-3
  • Kim HK. Role of ERK/MAPK signalling pathway in anti-inflammatory effects of Ecklonia cava in activated human mast cell line-1 cells. Asian Pac J Trop Med. 2014;7(9):703–708.
  • Du Y, Du Y, Zhang Y, et al. MKP-1 reduces Abeta generation and alleviates cognitive impairments in Alzheimer’s disease models. Signal Transduct Target Ther. 2019;4:58. doi:10.1038/s41392-019-0091-4
  • Chen MJ, Ramesha S, Weinstock LD, et al. Microglial ERK signaling is a critical regulator of pro-inflammatory immune responses in Alzheimer’s disease. bioRxiv. 2019:798215. doi:10.1101/798215
  • Li WY, Wu SL, Fcy L, Yue K. 417-P: AGE precursor methylglyoxal leads to behavioral pattern changes characteristics of Alzheimer’s Disease in mice. Diabetes. 2021;70(Supplement_1). doi:10.2337/db21-417-P
  • Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–858. doi:10.1038/nprot.2006.116
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(December):813–820. doi:10.1038/414813a
  • Fleming T, Cuny J, Nawroth G, et al. Is diabetes an acquired disorder of reactive glucose metabolites and their intermediates? Diabetologia. 2012;55(4):1151–1155. doi:10.1007/s00125-012-2452-1
  • Sena CM, Matafome P, Crisostomo J, et al. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res. 2012;65(5):497–506. doi:10.1016/j.phrs.2012.03.004
  • Luth HJ, Ogunlade V, Kuhla B, et al. Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb Cortex. 2005;15(2):211–220. doi:10.1093/cercor/bhh123
  • Beeri MS, Silverman J, Moshier E, et al. Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Alzheimers Dement. 2011;7:S144–S145. doi:10.1016/j.jalz.2011.05.388
  • Kevin Flurkey JMC, Harrison DE. Mouse models in aging research. In: The Mouse in Biomedical Research. 2nd ed. Elsevier; 2007:637–672.
  • Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev. 2020;100(1):407–461. doi:10.1152/physrev.00001.2019
  • Carson MJ, Thrash JC, Walter B. The cellular response in neuroinflammation: the role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res. 2006;6(5):237–245. doi:10.1016/j.cnr.2006.09.004
  • Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405. doi:10.1016/s1474-4422(15)70016-5
  • Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS. TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation. 2010;7:1–13. doi:10.1186/1742-2094-7-62
  • Reilly JF, Maher PA, Kumari VG. Regulation of astrocyte GFAP expression by TGF-beta1 and FGF-2. Glia. 1998;22(2):202–210. doi:10.1002/(SICI)1098-1136(199802)22:2<202::AID-GLIA11>3.0.CO;2-1
  • Burton T, Liang B, Amara F, Amara F. Transcriptional activation and increase in expression of Alzheimer’s β-amyloid precursor protein gene is mediated by TGF-β in normal human astrocytes. Biochem Biophys Res Commun. 2002;295(3):702–712. doi:10.1016/S0006-291X(02)00724-6
  • Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis. 2000;7(6Pt B):682–689. doi:10.1006/nbdi.2000.0321
  • Bourne KZ, Ferrari DC, Lange-Dohna C, Rossner S, Wood TG, Perez-Polo JR. Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res. 2007;85(6):1194–1204. doi:10.1002/jnr.21252
  • Cho HJ, Kim SK, Jin SM, et al. IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes. Glia. 2007;55(3):253–262. doi:10.1002/glia.20451
  • Sun L, Zhou R, Yang G, Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase. Proc Natl Acad Sci USA. 2017;114(4):E476–E485. doi:10.1073/pnas.1618657114
  • Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802(4):396–405. doi:10.1016/j.bbadis.2009.12.009
  • Subramaniam S, Unsicker K. ERK and cell death: ERK1/2 in neuronal death. FEBS J. 2010;277(1):22–29. doi:10.1111/j.1742-4658.2009.07367.x
  • Sun J, Nan G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: a potential therapeutic target (Review). Int J Mol Med. 2017;39(6):1338–1346. doi:10.3892/ijmm.2017.2962
  • Ferrer I, Blanco R, Carmona M, et al. Phosphorylated map kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol. 2001;11(2):144–158. doi:10.1111/j.1750-3639.2001.tb00387.x
  • Tamagno E, Parola M, Bardini P, et al. Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem. 2005;92(3):628–636. doi:10.1111/j.1471-4159.2004.02895.x
  • Kwak YD, Choumkina E, Sugaya K. Amyloid precursor protein is involved in staurosporine induced glial differentiation of neural progenitor cells. Biochem Biophys Res Commun. 2006;344(1):431–437. doi:10.1016/j.bbrc.2006.03.054
  • Tran MD. P2 receptor stimulation induces amyloid precursor protein production and secretion in rat cortical astrocytes. Neurosci Lett. 2011;492(3):155–159. doi:10.1016/j.neulet.2011.01.078
  • Pei JJ, Braak H, An WL, et al. Up-regulation of mitogen-activated protein kinases ERK12 and MEK12 is associated with the progression of neurofibril. Mol Brain Res. 2002;109(1–2):45–55. doi:10.1016/S0169-328X(02)00488-6
  • Kheiri G, Dolatshahi M, Rahmani F, Rezaei N. Role of p38/MAPKs in Alzheimer’s disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci. 2018;30(1):9–30. doi:10.1515/revneuro-2018-0008