223
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Relationships Between Indicators of Metabolic Disorders and Selected Concentrations of Bioelements and Lead in Serum and Bone Tissue in Aging Men

ORCID Icon, , , , , & ORCID Icon show all
Pages 3901-3911 | Received 24 Aug 2022, Accepted 22 Nov 2022, Published online: 14 Dec 2022

References

  • Rayssiguier Y, Libako P, Nowacki W, Rock E. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation. Magnes Res. 2010;23(2):73–80. doi:10.1684/mrh.2010.0208
  • Fernández-Cao JC, Warthon-Medina M, Moran VH, et al. Zinc intake and status and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Nutrients. 2019;11(5):1027.
  • Qu R, Jia Y, Liu J, Jin S, Han T, Na L. Dietary flavonoids, copper intake, and risk of metabolic syndrome in Chinese adults. Nutrients. 2018;10(8):991. doi:10.3390/nu10080991
  • Filippini T, Michalke B, Malagoli C, et al. Determinants of serum cadmium levels in a Northern Italy community: a cross-sectional study. Environ Res. 2016;150:219–226. doi:10.1016/j.envres.2016.06.002
  • Shao W, Liu Q, He X, Liu H, Gu A, Jiang Z. Association between level of urinary trace heavy metals and obesity among children aged 6–19 years: NHANES 1999–2011. Environ Sci Pollut Res Int. 2017;24(12):11573–11581. doi:10.1007/s11356-017-8803-1
  • Padilla MA, Elobeid M, Ruden DM, Allison DB. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. Int J Environ Res Public Health. 2010;7(9):3332–3347. doi:10.3390/ijerph7093332
  • Leff T, Stemmer P, Tyrrell J, Jog R Diabetes and exposure to environmental lead (Pb). Toxics. 2018;6(3). Available from: https://pubmed.ncbi.nlm.nih.gov/30200608/. Accessed November 30, 2022.
  • Tsaih SW, Korrick S, Schwartz J, et al. Lead, diabetes, hypertension, and renal function: the normative aging study. Environ Health Perspect. 2004;112(11):1178–1182. doi:10.1289/ehp.7024
  • Guerrero-Romero F, Jaquez-Chairez FO, Rodríguez-Morán M. Magnesium in metabolic syndrome: a review based on randomized, double-blind clinical trials. Magnes Res. 2016;29(4):146–153. doi:10.1684/mrh.2016.0404
  • He K, Song Y, Belin RJ, Chen Y. Magnesium intake and the metabolic syndrome: epidemiologic evidence to date. J Cardiometab Syndr. 2006;1(5):351–355. doi:10.1111/j.1559-4564.2006.05702.x
  • Lu CW, Lee YC, Kuo CS, Chiang CH, Chang HH, Huang KC. Association of serum levels of zinc, copper, and iron with risk of metabolic syndrome. Nutrients. 2021;13(2):548.
  • Agrawal H, Aggarwal K, Jain A. Visceral adiposity index: simple tool for assessing cardiometabolic risk in women with polycystic ovary syndrome. Indian J Endocrinol Metab. 2019;23(2):232. doi:10.4103/ijem.IJEM_559_18
  • Lee I, Cooney LG, Saini S, et al. Increased risk of disordered eating in polycystic ovary syndrome. Fertil Steril. 2017;107(3):796–802. doi:10.1016/j.fertnstert.2016.12.014
  • Amato MC, Giordano C, Galia M, et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920–922. doi:10.2337/dc09-1825
  • Mendes SL. Produto de Acumulação Lipídica: Acurácia Para Identificação de Portadores da Síndrome Metabólica Em Adultos. Universidade Federal de Minas Gerais; 2016.
  • Taverna MJ, Martínez-Larrad MT, Frechtel GD, Serrano-Ríos M. Lipid accumulation product: a powerful marker of metabolic syndrome in healthy population. Eur J Endocrinol. 2011;164(4):559–567. doi:10.1530/EJE-10-1039
  • Kosaka K, Yamashita S, Ando C, Endo Y, Taniguchi K, Kikunaga S. Relationships among body mass index, activities of daily living and zinc nutritional status in disabled elderly patients in nursing facilities. J Nutr Sci Vitaminol. 2013;59(5):420–430. PMID: 24418876. doi:10.3177/jnsv.59.420
  • Huang X, Jiang D, Zhu Y, et al. Chronic high dose zinc supplementation induces visceral adipose tissue hypertrophy without altering body weight in mice. Nutrients. 2017;9(10):1138. PMID: 29057818; PMCID: PMC5691754. doi:10.3390/nu9101138
  • Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer’s disease. Int J Mol Sci. 2020;21(4). doi:10.3390/ijms21041505
  • Yang H, Liu CN, Wolf RM, et al. Obesity is associated with copper elevation in serum and tissues. Metallomics. 2019;11(8):1363–1371. doi:10.1039/C9MT00148D
  • Rotter I, Kosik-Bogacka D, Dołęgowska B, Safranow K, Lubkowska A, Laszczyńska M. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int J Environ Res Public Health. 2015;12(4):3944–3961. PMID: 25867198; PMCID: PMC4410226. doi:10.3390/ijerph120403944
  • Bierhals IO, Dos Santos Vaz J, Bielemann RM, et al. Associations between body mass index, body composition and bone density in young adults: findings from a southern Brazilian cohort. BMC Musculoskelet Disord. 2019;20(1):322. PMID: 31288773; PMCID: PMC6617655. doi:10.1186/s12891-019-2656-3
  • Kahn HS. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005;8(5):1.
  • Pilarczyk B, Pilarczyk R, Tomza-Marciniak A, Hendzel D, Bakowska M, Stankiewicz T. Evaluation of selenium status and its distribution in organs of free living foxes (Vulpes vulpes) from an Se deficient area. Pol J Vet Sci. 2011;14(3):453–457. doi:10.2478/v10181-011-0067-y
  • Pilarczyk B, Tomza-Marciniak A, Mituniewicz-Małek A, et al. Selenium content in selected products of animal origin and estimation of the degree of cover daily Se requirement in Poland. Int J Food Sci Technol. 2010;45(1):186–191. doi:10.1111/j.1365-2621.2009.02120.x
  • Wang L, Yu H, Yang G, et al. Correlation between bone mineral density and serum trace element contents of elderly males in Beijing urban area. Int J Clin Exp Med. 2015;8(10):19250.
  • Rexhepi S, Bahtiri E, Rexhepi M, SahatciuMeka V, Rexhepi B. Association of body weight and body mass index with bone mineral density in women and men from Kosovo. Mater Sociomed. 2015;27(4):259. doi:10.5455/msm.2015.27.259-262
  • Gibson RS. Nutritional assessment systems. Princ Nutr Assess. 2005;2005:2–7.
  • Angelova M, Asenova S, Nedkova V, Koleva-Kolarova R. Mini-review copper in the human organism. Trakia J Sci. 2011;9(1):88–98.
  • Gu K, Li X, Xiang W, Jiang X. The relationship between serum copper and overweight/obesity: a meta-analysis. Biol Trace Elem Res. 2020;194(2):336–347. doi:10.1007/s12011-019-01803-6
  • Habib SA, Saad EA, Elsharkawy AA, Attia ZR. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: interrelations with obesity in Egyptian non-diabetic obese children and adolescents. Adv Med Sci. 2015;60(2):179–185. doi:10.1016/j.advms.2015.02.002
  • Boullata J, Muthukumaran G, Piarulli A, Labarre J, Compher C. Oral copper absorption in men with morbid obesity. J Trace Elem Med Biol. 2017;44:146–150. doi:10.1016/j.jtemb.2017.07.005
  • Rył A, Miazgowski T, Szylińska A, et al. Bone health in aging men: does zinc and cuprum level matter? Biomolecules. 2021;11(2):1–12. doi:10.3390/biom11020237
  • Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749–784. doi:10.1152/physrev.00035.2014
  • Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem. 2009;338(1):241–254. doi:10.1007/s11010-009-0358-0
  • Hyun TH, Barrett-Connor E, Milne DB. Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study. Am J Clin Nutr. 2004;80(3):715–721. doi:10.1093/ajcn/80.3.715
  • Jafarnejad S, Mahboobi S, McFarland LV, Taghizadeh M, Rahimi F. Meta-analysis: effects of zinc supplementation alone or with multi-nutrients, on glucose control and lipid levels in patients with type 2 diabetes. Prev Nutr Food Sci. 2019;24(1):8. doi:10.3746/pnf.2019.24.1.8
  • Amin N, Clark CCT, Taghizadeh M, Djafarnejad S. Zinc supplements and bone health: the role of the RANKL-RANK axis as a therapeutic target. J Trace Elem Med Biol. 2020;57:126417. doi:10.1016/j.jtemb.2019.126417
  • Suzuki T, Katsumata SI, Matsuzaki H, Suzuki K. Dietary zinc deficiency induces oxidative stress and promotes tumor necrosis factor-α- and interleukin-1β-induced RANKL expression in rat bone. J Clin Biochem Nutr. 2016;58(2):122–129. doi:10.3164/jcbn.15-87
  • Agostoni C, Berni Canani R, Fairweather-Tait S, et al. Scientific opinion on dietary reference values for magnesium. EFSA J. 2015;13(7):4186.
  • Mirmiran P, Shab-Bidar S, Hosseini-Esfahani F, Asghari G, Hosseinpour-Niazi S, Azizi F. Magnesium intake and prevalence of metabolic syndrome in adults: Tehran lipid and glucose study. Public Health Nutr. 2012;15(4):693–701. doi:10.1017/S1368980011002941
  • Choi MK, Bae YJ. Relationship between dietary magnesium, manganese, and copper and metabolic syndrome risk in Korean adults: the Korea national health and nutrition examination survey (2007–2008). Biol Trace Elem Res. 2013;156(1–3):56–66. doi:10.1007/s12011-013-9852-z
  • Dibaba DT, Xun P, Fly AD, Yokota K, He K. Dietary magnesium intake and risk of metabolic syndrome: a meta-analysis. Diabet Med. 2014;31(11):1301–1309. doi:10.1111/dme.12537
  • Han D, Fang X, Su D, et al. Dietary calcium intake and the risk of metabolic syndrome: a systematic review and meta-analysis. Sci Rep. 2019;9(1):1–7. doi:10.1038/s41598-019-55507-x
  • Dai Q, Shu XO, Deng X, et al. Modifying effect of calcium/magnesium intake ratio and mortality: a population based cohort study. BMJ Open. 2013;3(2):e002111. doi:10.1136/bmjopen-2012-002111
  • Mederle OA, Balas M, Ioanoviciu SD, Gurban CV, Tudor A, Borza C. Correlations between bone turnover markers, serum magnesium and bone mass density in postmenopausal osteoporosis. Clin Interv Aging. 2018;13:1383. doi:10.2147/CIA.S170111
  • Okyay E, Ertugrul C, Acar B, Sisman AR, Onvural B, Ozaksoy D. Comparative evaluation of serum levels of main minerals and postmenopausal osteoporosis. Maturitas. 2013;76(4):320–325. doi:10.1016/j.maturitas.2013.07.015
  • Sharma R, Sharma P, Kumar P, Gupta G. Role of magnesium in postmenopausal women with osteoporosis and osteopenia. Asian J Pharm Clin Res. 2016;9:198–199.
  • Hayhoe RPG, Lentjes MAH, Luben RN, Khaw KT, Welch AA. Dietary magnesium and potassium intakes and circulating magnesium are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the EPIC-Norfolk cohort study. Am J Clin Nutr. 2015;102(2):376–384. doi:10.3945/ajcn.114.102723
  • Hernández-Mendoza H, Rios-Lugo MJ, Álvarez-Loredo HE, et al. Serum lead levels and its association with overweight and obesity. J Trace Elem Med Biol. 2022;72:126984. doi:10.1016/j.jtemb.2022.126984
  • Gaffney-Stomberg E. The impact of trace minerals on bone metabolism. Biol Trace Elem Res. 2019;188(1):26–34. doi:10.1007/s12011-018-1583-8
  • Yang T, Lee SY, Park KC, Park SH, Chung J, Lee S. The effects of selenium on bone health: from element to therapeutics. Molecules. 2022;27(2):392. doi:10.3390/molecules27020392
  • Hou JM, Xue Y, Lin QM. Bovine lactoferrin improves bone mass and microstructure in ovariectomized rats via OPG/RANKL/RANK pathway. Acta Pharmacol Sin. 2012;33(10):1277–1284. doi:10.1038/aps.2012.83
  • Vedarethinam V, Huang L, Zhang M, et al. Vanadium core–shell nanorods inspect metabolic changes of diabetic retinopathy. Adv Funct Mater. 2020;30(35):2002791. doi:10.1002/adfm.202002791
  • Zhang M, Huang L, Yang J, et al. Ultra-fast label-free serum metabolic diagnosis of coronary heart disease via a deep stabilizer. Adv Sci. 2021;8(18):2101333. doi:10.1002/advs.202101333