251
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Huoxue Jiangtang Decoction Alleviates Type 2 Diabetes Mellitus by Regulating the Oral Microbiota and Food Preferences

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 3739-3751 | Received 17 Oct 2022, Accepted 24 Nov 2022, Published online: 30 Nov 2022

References

  • Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020;2020:1–13. doi:10.1155/2020/8609213
  • Alvarenga MOP, Miranda GHN, Ferreira RO, et al. Association between diabetic retinopathy and periodontitis—A systematic review. Front Public Health. 2021;8:550614. doi:10.3389/fpubh.2020.550614
  • Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Sung KC, Lee MY, Kim YH, et al. Obesity and incidence of diabetes: effect of absence of metabolic syndrome, insulin resistance, inflammation and fatty liver. Atherosclerosis. 2018;275:50–57. doi:10.1016/j.atherosclerosis.2018.05.042
  • Graves DT, Ding Z, Yang Y. The impact of diabetes on periodontal diseases. Periodontol 2000. 2020;82(1):214–224. doi:10.1111/prd.12318
  • Bharateesh J, Ahmed M, Kokila G. Diabetes and Oral Health: a Case-control Study. Int J Prev Med. 2012;3(11):806–809.
  • Guzman S, Karima M, Wang HY, Van Dyke TE. Association between interleukin‐1 genotype and periodontal disease in a diabetic population. J Periodontol. 2003;74(8):1183–1190. doi:10.1902/jop.2003.74.8.1183
  • Schmidt TS, Hayward MR, Coelho LP, et al. Extensive transmission of microbes along the gastrointestinal tract. Elife. 2019;8:e42693. doi:10.7554/eLife.42693
  • Dewhirst FE, Chen T, Izard J, et al. The Human Oral Microbiome. J Bacteriol. 2010;192(19):5002–5017. doi:10.1128/JB.00542-10
  • Lee Y, Chung SW, Auh Q, et al. Progress in oral microbiome related to oral and systemic diseases: an update. Diagnostics. 2021;11(7):1283. doi:10.3390/diagnostics11071283
  • Balakrishnan B, Selvaraju V, Chen J, et al. Ethnic variability associating gut and oral microbiome with obesity in children. Gut Microbes. 2021;13(1):1882926. doi:10.1080/19490976.2021.1882926
  • Chen B, Wang Z, Wang J, et al. The oral microbiome profile and biomarker in Chinese type 2 diabetes mellitus patients. Endocrine. 2020;68(3):564–572. doi:10.1007/s12020-020-02269-6
  • Lampuré A, Castetbon K, Deglaire A, et al. Associations between liking for fat, sweet or salt and obesity risk in French adults: a prospective cohort study. Int J Behav Nutr Phy. 2016;13(1):1–15. doi:10.1186/s12966-016-0406-6
  • Bartoshuk LM, Duffy VB, Hayes JE, Moskowitz HR, Snyder DJ. Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives. Philos Trans R Soc B. 2006;361(1471):1137–1148. doi:10.1098/rstb.2006.1853
  • Esberg A, Haworth S, Hasslöf P, Lif Holgerson P, Johansson I. Oral microbiota profile associates with sugar intake and taste preference genes. Nutrients. 2020;12(3):681. doi:10.3390/nu12030681
  • Murtaza B, Hichami A, Khan AS, et al. Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice. J Lipid Res. 2020;61(2):133–142. doi:10.1194/jlr.RA119000142
  • Cattaneo C, Gargari G, Koirala R, et al. New insights into the relationship between taste perception and oral microbiota composition. Sci Rep. 2019;9(1):1–8. doi:10.1038/s41598-019-40374-3
  • Besnard P, Christensen JE, Bernard A, Collet X, Verges B, Burcelin R. Fatty taste variability in obese subjects: the oral microbiota hypothesis. OCL. 2020;27:38. doi:10.1051/ocl/2020033
  • Liu X, Liu D, Shuai Y, et al. Effects of HuoxueJiangtang decoction alone or in combination with metformin on renal function and renal cortical mRNA expression in diabetic nephropathy rats. Pharm Biol. 2020;58(1):1132–1139. doi:10.1080/13880209.2020.1844242
  • Chen Q, Zhao Y, Li M, et al. HPLC-MS and network pharmacology analysis to reveal quality markers of Huo-Xue-Jiang-Tang Yin, a Chinese herbal medicine for type 2 diabetes mellitus. Evid Based Compl Alt. 2021;2021:1–12. doi:10.1155/2021/6518355
  • Lee M, Li H, Zhao H, et al. Effects of hydroxysafflor yellow A on the PI3K/AKT pathway and apoptosis of pancreatic β-cells in type 2 diabetes mellitus rats. Diabetes Metab Syndr Obes. 2020;13:1097–1107. doi:10.2147/DMSO.S246381
  • Chen CSY, Bench EM, Allerton TD, Schreiber AL, Arceneaux KP, Primeaux SD. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol. 2013;305(11):R1346–R1355. doi:10.1152/ajpregu.00582.2012
  • Hyde KM, Blonde GD, Bueter M, le Roux CW, Spector AC. Gastric bypass in female rats lowers concentrated sugar solution intake and preference without affecting brief-access licking after long-term sugar exposure. Am J Physiol. 2020;318(5):R870–R885. doi:10.1152/ajpregu.00240.2019
  • Saruta J, Lee T, Shirasu M, et al. Chronic stress affects the expression of brain-derived neurotrophic factor in rat salivary glands. Stress. 2010;13(1):53–60. doi:10.3109/10253890902875167
  • Abdulmalek S, Eldala A, Awad D, Balbaa M. Ameliorative effect of curcumin and zinc oxide nanoparticles on multiple mechanisms in obese rats with induced type 2 diabetes. Sci Rep. 2021;11(1):1–22. doi:10.1038/s41598-021-00108-w
  • Hintao J, Teanpaisan R, Chongsuvivatwong V, et al. The microbiological profiles of saliva, supragingival and subgingival plaque and dental caries in adults with and without type 2 diabetes mellitus. Oral Microbiol Immunol. 2007;22(3):175–181. doi:10.1111/j.1399-302X.2007.00341.x
  • Casarin RCV, Barbagallo A, Meulman T, et al. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. J Periodontal Res. 2013;48(1):30–36. doi:10.1111/j.1600-0765.2012.01498.x
  • Shaalan A, Lee S, Feart C, et al. Alterations in the oral microbiome associated with diabetes, overweight, and dietary components. Front Nutr. 2022;9. doi:10.3389/fnut.2022.914715
  • Ogawa T, Honda-Ogawa M, Ikebe K, et al. Characterizations of oral microbiota in elderly nursing home residents with diabetes. J Oral Sci. 2017;59(4):549–555. doi:10.2334/josnusd.16-0722
  • Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. doi:10.1038/nature07540
  • Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–1517. doi:10.2337/db08-1637
  • Baltz RH. Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol. 2008;8(5):557–563. doi:10.1016/j.coph.2008.04.008
  • Bo-Linn GW, Santa AC, Morawski SG, Fordtran JS. Starch blockers--their effect on calorie absorption from a high-starch meal. N Engl J Med. 1982;307(23):1413–1416. doi:10.1056/NEJM198212023072301
  • Long J, Cai Q, Steinwandel M, et al. Association of oral microbiome with type 2 diabetes risk. J Periodontal Res. 2017;52(3):636–643. doi:10.1111/jre.12432
  • Kampoo K, Teanpaisan R, Ledder RG, McBain AJ. Oral bacterial communities in individuals with type 2 diabetes who live in Southern Thailand. Appl Environ Microb. 2014;80(2):662–671. doi:10.1128/AEM.02821-13
  • Saeb ATM, Al-Rubeaan KA, Aldosary K, et al. Relative reduction of biological and phylogenetic diversity of the oral microbiota of diabetes and pre-diabetes patients. Microb Pathogenesis. 2019;128:215–229. doi:10.1016/j.micpath.2019.01.009
  • Palmer RJ, Diaz PI, Kolenbrander PE. Rapid succession within the veillonella population of a developing human oral biofilm in situ. J Bacteriol. 2006;188(11):4117–4124. doi:10.1128/JB.01958-05
  • Wilson WA, Roach PJ, Montero M, et al. Regulation of glycogen metabolism in yeast and bacteria. Fems Microbiol Rev. 2010;34(6):952–985. doi:10.1111/j.1574-6976.2010.00220.x
  • Wicaksono DP, Washio J, Abiko Y, Domon H, Takahashi N, Björkroth J. Nitrite production from nitrate and its link with lactate metabolism in Oral Veillonella spp. Appl Environ Microbiol. 2020;86(20):e01255–20. doi:10.1128/AEM.01255-20
  • Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, Mira A. Isolation and characterization of nitrate-reducing bacteria as potential probiotics for oral and systemic health. Front Microbiol. 2020;11:555465. doi:10.3389/fmicb.2020.555465
  • Lundberg JO, Carlström M, Weitzberg E. Metabolic effects of dietary nitrate in health and disease. Cell Metab. 2018;28(1):9–22. doi:10.1016/j.cmet.2018.06.007
  • Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374–2383. doi:10.1007/s00125-007-0791-0
  • Wu X, Ma C, Han L, et al. Molecular characterisation of the faecal microbiota in patients with type ii diabetes. Curr Microbiol. 2010;61(1):69–78. doi:10.1007/s00284-010-9582-9
  • Schwiertz A, Taras D, Schäfer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–195. doi:10.1038/oby.2009.167
  • Lipsky LM, Nansel TR, Haynie DL, Mehta SN, Laffel LMB. Associations of food preferences and household food availability with dietary intake and quality in youth with type 1 diabetes. Appetite. 2012;59(2):218–223. doi:10.1016/j.appet.2012.05.005
  • Khan AS, Keast R, Khan NA. Preference for dietary fat: from detection to disease. Prog Lipid Res. 2020;78:101032. doi:10.1016/j.plipres.2020.101032
  • Tepper B, Banni S, Melis M, Crnjar R, Tomassini Barbarossa I. Genetic sensitivity to the bitter taste of 6-n-Propylthiouracil (PROP) and its association with physiological mechanisms controlling Body Mass Index (BMI). Nutrients. 2014;6(9):3363–3381. doi:10.3390/nu6093363
  • Shetty V, Hegde BLP, Hegde AM. PROP test: prediction of caries risk by genetic taste perception among the visually impaired children. Spec Care Dentist. 2014;34(1):34–40. doi:10.1111/j.1754-4505.2012.00307.x