655
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Mitochondrial Toxicant-Induced Neuronal Apoptosis in Parkinson’s Disease: What We Know so Far

ORCID Icon, & ORCID Icon
Pages 1-13 | Received 10 Jul 2022, Accepted 19 Jan 2023, Published online: 26 Jan 2023

References

  • Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257–273. doi:10.1016/j.neuron.2014.12.007
  • Aubignat M, Tir M, Krystkowiak P. Les symptômes non-moteurs de la maladie de Parkinson de la physiopathologie au diagnostic précoce [Non-motor symptoms of Parkinson’s disease from pathophysiology to early diagnosis]. Rev Med Interne. 2021;42(4):251–257. French. doi:10.1016/j.revmed.2020.06.019
  • Antony PM, Diederich NJ, Kruger R, Balling R. The hallmarks of Parkinson’s disease. FEBS J. 2013;280(23):5981–5993. doi:10.1111/febs.12335
  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. doi:10.1101/cshperspect.a028035
  • Zambrano K, Barba D, Castillo K, et al. Fighting Parkinson’s disease: the return of the mitochondria. Mitochondrion. 2022;64:34–44. doi:10.1016/j.mito.2022.02.003
  • Beitz JM. Parkinson’s disease: a review. Front Biosci. 2014;6(1):65–74. doi:10.2741/S415
  • Bene R, Antic S, Budisic M, et al. Parkinson’s disease. Acta Clin Croat. 2009;48(3):377–380.
  • Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG. Protein kinase Cdelta is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther. 2005;313(1):46–55. doi:10.1124/jpet.104.078469
  • Iannielli A, Bido S, Folladori L, et al. Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep. 2018;22(8):2066–2079. doi:10.1016/j.celrep.2018.01.089
  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277(47):44784–44790. doi:10.1074/jbc.M207217200
  • Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004;279(47):49064–49073. doi:10.1074/jbc.M407715200
  • Larsen SB, Hanss Z, Kruger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res. 2018;373(1):21–37. doi:10.1007/s00441-017-2768-8
  • Gonzalez-Rodriguez P, Zampese E, Stout KA, et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature. 2021;599(7886):650–656. doi:10.1038/s41586-021-04059-0
  • Monzio Compagnoni G, Di Fonzo A, Corti S, Comi GP, Bresolin N, Masliah E. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s Disease and Parkinson’s Disease. Mol Neurobiol. 2020;57(7):2959–2980. doi:10.1007/s12035-020-01926-1
  • Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3–4):222–230. doi:10.1016/S0891-5849(00)00317-8
  • Meyer JN, Hartman JH, Mello DF. Mitochondrial toxicity. Toxicol Sci. 2018;162(1):15–23. doi:10.1093/toxsci/kfy008
  • Meyer JN, Chan SSL. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity. Toxicology. 2017;391:2–4. doi:10.1016/j.tox.2017.06.002
  • Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–2014. doi:10.3969/j.issn.1673-5374.2013.21.009
  • Sherer TB, Chowdhury S, Peabody K, Brooks DW. Overcoming obstacles in Parkinson’s disease. Mov Disord. 2012;27(13):1606–1611. doi:10.1002/mds.25260
  • Gazewood JD, Richards DR, Clebak K. Parkinson disease: an update. Am Fam Physician. 2013;87(4):267–273.
  • George JM, Jin H, Woods WS, Clayton DF. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron. 1995;15(2):361–372. doi:10.1016/0896-6273(95)90040-3
  • Iwai A, Masliah E, Yoshimoto M, et al. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron. 1995;14(2):467–475. doi:10.1016/0896-6273(95)90302-X
  • Li KL, Huang HY, Ren H, Yang XL. Role of exosomes in the pathogenesis of inflammation in Parkinson’s disease. Neural Regen Res. 2022;17(9):1898–1906. doi:10.4103/1673-5374.335143
  • Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci. 2005;28:57–87. doi:10.1146/annurev.neuro.28.061604.135718
  • Latchoumycandane C, Anantharam V, Jin H, Kanthasamy A, Kanthasamy A. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKCdelta in cell culture and animal models of Parkinson’s disease. Toxicol Appl Pharmacol. 2011;256(3):314–323. doi:10.1016/j.taap.2011.07.021
  • Wichmann T, DeLong MR. Pathophysiology of parkinsonian motor abnormalities. Adv Neurol. 1993;60:53–61.
  • Mottis A, Herzig S, Auwerx J. Mitocellular communication: shaping health and disease. Science. 2019;366(6467):827–832. doi:10.1126/science.aax3768
  • Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26(6):711–723. doi:10.1016/j.beem.2012.05.003
  • Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191(4784):144–148. doi:10.1038/191144a0
  • Jayasundara N. Ecological significance of mitochondrial toxicants. Toxicology. 2017;391:64–74. doi:10.1016/j.tox.2017.07.015
  • Pieczenik SR, Neustadt J. Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol. 2007;83(1):84–92. doi:10.1016/j.yexmp.2006.09.008
  • Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med. 2003;348(14):1365–1375. doi:10.1056/NEJMra022366
  • Badley AD, Dockrell D, Paya CV. Apoptosis in AIDS. Adv Pharmacol. 1997;41:271–294.
  • Tatton WG, Olanow CW. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta. 1999;1410(2):195–213. doi:10.1016/S0005-2728(98)00167-4
  • Meyer JN, Leung MC, Rooney JP, et al. Mitochondria as a target of environmental toxicants. Toxicol Sci. 2013;134(1):1–17. doi:10.1093/toxsci/kft102
  • Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979–980. doi:10.1126/science.6823561
  • Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol. 2001;65(2):135–172. doi:10.1016/s0301-0082(01)00003-x
  • Hisahara S, Shimohama S. Toxin-induced and genetic animal models of Parkinson’s disease. Parkinsons Dis. 2010;2011:951709. doi:10.4061/2011/951709
  • Nicotra A, Parvez SH. Cell death induced by MPTP, a substrate for monoamine oxidase B. Toxicology. 2000;153(1–3):157–166. doi:10.1016/S0300-483X(00)00311-5
  • Perry TL, Yong VW, Jones K, et al. Effects of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and its metabolite, N-methyl-4-phenylpyridinium ion, on dopaminergic nigrostriatal neurons in the mouse. Neurosci Lett. 1985;58(3):321–326. doi:10.1016/0304-3940(85)90074-6
  • Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc. 2007;2(1):141–151. doi:10.1038/nprot.2006.342
  • Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA. Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis. 2005;20(3):898–906. doi:10.1016/j.nbd.2005.05.028
  • Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124(8):901–905. doi:10.1007/s00702-017-1686-y
  • Pathania A, Garg P, Sandhir R. Impaired mitochondrial functions and energy metabolism in MPTP-induced Parkinson’s disease: comparison of mice strains and dose regimens. Metab Brain Dis. 2021;36(8):2343–2357. doi:10.1007/s11011-021-00840-2
  • Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J. 2012;279(7):1156–1166. doi:10.1111/j.1742-4658.2012.08491.x
  • Ascenzi P, Di Masi A, Sciorati C, Clementi E. Peroxynitrite-An ugly biofactor? Biofactors. 2010;36(4):264–273. doi:10.1002/biof.103
  • Ahmad R, Hussain A, Ahsan H. Peroxynitrite: cellular pathology and implications in autoimmunity. J Immunoassay Immunochem. 2019;40(2):123–138. doi:10.1080/15321819.2019.1583109
  • Dawson TM, Dawson VL. Nitric oxide signaling in neurodegeneration and cell death. Adv Pharmacol. 2018;82:57–83.
  • Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6(8):662–680. doi:10.1038/nrd2222
  • Radi R, Cassina A, Hodara R. Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem. 2002;383(3–4):401–409. doi:10.1515/BC.2002.044
  • Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med. 2002;33(11):1451–1464. doi:10.1016/S0891-5849(02)01111-5
  • Radi R, Rodriguez M, Castro L, Telleri R. Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys. 1994;308(1):89–95. doi:10.1006/abbi.1994.1013
  • Brown GC, Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta. 2004;1658(1–2):44–49. doi:10.1016/j.bbabio.2004.03.016
  • Bolanos JP, Heales SJ, Land JM, Clark JB. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem. 1995;64(5):1965–1972. doi:10.1046/j.1471-4159.1995.64051965.x
  • Guidarelli A, Fiorani M, Cantoni O. Enhancing effects of intracellular ascorbic acid on peroxynitrite-induced U937 cell death are mediated by mitochondrial events resulting in enhanced sensitivity to peroxynitrite-dependent inhibition of complex III and formation of hydrogen peroxide. Biochem J. 2004;378(Pt 3):959–966. doi:10.1042/bj20031167
  • Cassina A, Radi R. Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996;328(2):309–316. doi:10.1006/abbi.1996.0178
  • Ebadi M, Sharma SK. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Antioxid Redox Signal. 2003;5(3):319–335. doi:10.1089/152308603322110896
  • Ebadi M, Sharma SK, Ghafourifar P, Brown-Borg H, El Refaey H. Peroxynitrite in the pathogenesis of Parkinson’s disease and the neuroprotective role of metallothioneins. Methods Enzymol. 2005;396:276–298.
  • Picon-Pages P, Garcia-Buendia J, Munoz FJ. Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis. 2019;1865(8):1949–1967. doi:10.1016/j.bbadis.2018.11.007
  • Torreilles F, Salman-Tabcheh S, Guerin M, Torreilles J. Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev. 1999;30(2):153–163. doi:10.1016/S0165-0173(99)00014-4
  • Chinta SJ, Andersen JK. Nitrosylation and nitration of mitochondrial complex I in Parkinson’s disease. Free Radic Res. 2011;45(1):53–58. doi:10.3109/10715762.2010.509398
  • Ara J, Przedborski S, Naini AB, et al. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci U S A. 1998;95(13):7659–7663. doi:10.1073/pnas.95.13.7659
  • Bharath S, Andersen JK. Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson’s disease. Antioxid Redox Signal. 2005;7(7–8):900–910. doi:10.1089/ars.2005.7.900
  • Zaheer F, Slevin JT. Trichloroethylene and Parkinson disease. Neurol Clin. 2011;29(3):657–665.
  • Bringmann G, God R, Feineis D, Janetzky B, Reichmann H. TaClo as a neurotoxic lead: improved synthesis, stereochemical analysis, and inhibition of the mitochondrial respiratory chain. J Neural Transm Suppl. 1995;46:245–254.
  • Bringmann G, God R, Feineis D, et al. The TaClo concept: 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm Suppl. 1995;46:235–244.
  • Bringmann G, Hille A. Endogenous alkaloids in man, VII: 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline--a potential chloral-derived indol alkaloid in man. Arch Pharm. 1990;323(9):567–569. doi:10.1002/ardp.19903230903
  • Kochen W, Kohlmuller D, De Biasi P, Ramsay R. The endogeneous formation of highly chlorinated tetrahydro-beta-carbolines as a possible causative mechanism in idiopathic Parkinson’s disease. Adv Exp Med Biol. 2003;527:253–263.
  • Yang Y, Pang B, Liu Z, et al. 1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) induces the apoptosis of dopaminergic neurons via oxidative stress and neuroinflammation. Oxid Med Cell Longev. 2019;2019:1292891. doi:10.1155/2019/1292891
  • Rausch WD, Abdel-mohsen M, Koutsilieri E, Chan WW, Bringmann G. Studies of the potentially endogenous toxin TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline) in neuronal and glial cell cultures. J Neural Transm Suppl. 1995;46:255–263.
  • Keane PC, Kurzawa M, Blain PG, Morris CM. Mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis. 2011;2011:716871. doi:10.4061/2011/716871
  • Keane PC, Hanson PS, Patterson L, et al. Trichloroethylene and its metabolite TaClo lead to degeneration of substantia nigra dopaminergic neurones: effects in wild type and human A30P mutant alpha-synuclein mice. Neurosci Lett. 2019;711:134437. doi:10.1016/j.neulet.2019.134437
  • Shokrzadeh M, Shaki F, Mohammadi E, Rezagholizadeh N, Ebrahimi F. Edaravone decreases paraquat toxicity in a549 cells and lung isolated mitochondria. Iran J Pharm Res. 2014;13(2):675–681.
  • Cocheme HM, Murphy MP. Chapter 22 the uptake and interactions of the redox cycler paraquat with mitochondria. Methods Enzymol. 2009;456:395–417.
  • Yang W, Tiffany-Castiglioni E. Paraquat-induced apoptosis in human neuroblastoma SH-SY5Y cells: involvement of p53 and mitochondria. J Toxicol Environ Health A. 2008;71(4):289–299. doi:10.1080/15287390701738467
  • Chinta SJ, Woods G, Demaria M, et al. Cellular senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep. 2018;22(4):930–940. doi:10.1016/j.celrep.2017.12.092
  • Zuo Y, Xie J, Li X, et al. Ferritinophagy-mediated ferroptosis involved in paraquat-induced neurotoxicity of dopaminergic neurons: implication for neurotoxicity in PD. Oxid Med Cell Longev. 2021;2021:9961628. doi:10.1155/2021/9961628
  • Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008;4(11):600–609. doi:10.1038/ncpneuro0924
  • Corasaniti MT, Strongoli MC, Rotiroti D, Bagetta G, Nistico G. Paraquat: a useful tool for the in vivo study of mechanisms of neuronal cell death. Pharmacol Toxicol. 1998;83(1):1–7. doi:10.1111/j.1600-0773.1998.tb01434.x
  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem. 2002;277(3):1641–1644. doi:10.1074/jbc.C100560200
  • Radad K, Al-Shraim M, Al-Emam A, et al. Rotenone: from modelling to implication in Parkinson’s disease. Folia Neuropathol. 2019;57(4):317–326. doi:10.5114/fn.2019.89857
  • Talpade DJ, Greene JG, Higgins DS Jr., Greenamyre JT. In vivo labeling of mitochondrial complex I (NADH: ubiquinoneoxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem. 2008;75(6):2611–2621. doi:10.1046/j.1471-4159.2000.0752611.x
  • Schuler F, Casida JE. Functional coupling of PSST and ND1 subunits in NADH: ubiquinoneoxidoreductase established by photoaffinity labeling. Biochim Biophys Acta. 2001;1506(1):79–87. doi:10.1016/S0005-2728(01)00183-9
  • Yarmohammadi F, Wallace Hayes A, Najafi N, Karimi G. The protective effect of natural compounds against rotenone-induced neurotoxicity. J Biochem Mol Toxicol. 2020;34(12):e22605. doi:10.1002/jbt.22605
  • Li N, Ragheb K, Lawler G, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003;278(10):8516–8525. doi:10.1074/jbc.M210432200
  • Landau R, Halperin R, Sullivan P, et al. The rat rotenone model reproduces the abnormal pattern of central catecholamine metabolism found in Parkinson’s disease. Dis Model Mech. 2022;15(1). doi:10.1242/dmm.049082
  • Sharma M, Kaur J, Rakshe S, Sharma N, Khunt D, Khairnar A. Intranasal exposure to low-dose rotenone induced alpha-synuclein accumulation and Parkinson’s like symptoms without loss of dopaminergic neurons. Neurotox Res. 2022;40(1):215–229. doi:10.1007/s12640-021-00436-9
  • Mohammadi H, Ghassemi-Barghi N, Malakshah O, Ashari S. Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol. 2019;70(2):74–89. doi:10.2478/aiht-2019-70-3263
  • Gassner B, Wuthrich A, Scholtysik G, Solioz M. The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther. 1997;281(2):855–860.
  • Hirano T, Suzuki N, Ikenaka Y, Hoshi N, Tabuchi Y. Neurotoxicity of a pyrethroid pesticide deltamethrin is associated with the imbalance in proteolytic systems caused by mitophagy activation and proteasome inhibition. Toxicol Appl Pharmacol. 2021;430:115723. doi:10.1016/j.taap.2021.115723
  • Chen D, Huang X, Liu L, Shi N. Deltamethrin induces mitochondrial membrane permeability and altered expression of cytochrome C in rat brain. J Appl Toxicol. 2007;27(4):368–372. doi:10.1002/jat.1215
  • Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP. Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol. 2015;51(2):448–465. doi:10.1007/s12035-014-8696-7
  • Park YS, Park JH, Ko J, Shin IC, Koh HC. mTOR inhibition by rapamycin protects against deltamethrin-induced apoptosis in PC12 Cells. Environ Toxicol. 2017;32(1):109–121. doi:10.1002/tox.22216
  • Gozzelino R, Arosio P. Iron homeostasis in health and disease. Int J Mol Sci. 2016;17(1):130. doi:10.3390/ijms17010130
  • Baranwal AK, Singhi SC. Acute iron poisoning: management guidelines. Indian Pediatr. 2003;40(6):534–540.
  • Farrall AJ, Wardlaw JM. Blood-brain barrier: ageing and microvascular disease--systematic review and meta-analysis. Neurobiol Aging. 2009;30(3):337–352. doi:10.1016/j.neurobiolaging.2007.07.015
  • Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol. 2006;65(3):199–203. doi:10.1097/01.jnen.0000202887.22082.63
  • Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045–1060. doi:10.1016/S1474-4422(14)70117-6
  • Carocci A, Catalano A, Sinicropi MS, Genchi G. Oxidative stress and neurodegeneration: the involvement of iron. Biometals. 2018;31(5):715–735. doi:10.1007/s10534-018-0126-2
  • Lhermitte J, Kraus WM, McAlpine D. Original papers: on the occurrence of abnormal deposits of iron in the brain in parkinsonism with special reference to its localisation. J Neurol Psychopathol. 1924;5(19):195–208. doi:10.1136/jnnp.s1-5.19.195
  • Salazar J, Mena N, Hunot S, et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A. 2008;105(47):18578–18583. doi:10.1073/pnas.0804373105
  • Nunez MT, Chana-Cuevas P. New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals. 2018;11(4):109. doi:10.3390/ph11040109
  • Devos D, Moreau C, Devedjian JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal. 2014;21(2):195–210. doi:10.1089/ars.2013.5593
  • Mastroberardino PG, Hoffman EK, Horowitz MP, et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis. 2009;34(3):417–431. doi:10.1016/j.nbd.2009.02.009
  • Galvin JE, Giasson B, Hurtig HI, Lee VM, Trojanowski JQ. Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol. 2000;157(2):361–368. doi:10.1016/S0002-9440(10)64548-8
  • Wakabayashi K, Fukushima T, Koide R, et al. Juvenile-onset generalized neuroaxonal dystrophy (Hallervorden-Spatz disease) with diffuse neurofibrillary and lewy body pathology. Acta Neuropathol. 2000;99(3):331–336. doi:10.1007/s004010050049
  • Uversky VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem. 2007;103(1):17–37. doi:10.1111/j.1471-4159.2007.04764.x
  • Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–873. doi:10.1038/nrn1537
  • Koeppen AH. The history of iron in the brain. J Neurol Sci. 1995;134:1–9. doi:10.1016/0022-510X(95)00202-D
  • Sanchez-Iglesias S, Soto-Otero R, Iglesias-Gonzalez J, Barciela-Alonso MC, Bermejo-Barrera P, Mendez-Alvarez E. Analysis of brain regional distribution of aluminium in rats via oral and intraperitoneal administration. J Trace Elem Med Biol. 2007;Suppl 21:31–34. doi:10.1016/j.jtemb.2007.09.010
  • Johnson VJ, Kim SH, Sharma RP. Aluminum-maltolate induces apoptosis and necrosis in neuro-2a cells: potential role for p53 signaling. Toxicol Sci. 2005;83(2):329–339. doi:10.1093/toxsci/kfi028
  • Kumar V, Gill KD. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology. 2014;41:154–166. doi:10.1016/j.neuro.2014.02.004
  • Savory J, Herman MM, Ghribi O. Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain. J Inorg Biochem. 2003;97(1):151–154. doi:10.1016/S0162-0134(03)00258-7
  • Oshima E, Ishihara T, Yokota O, et al. Accelerated tau aggregation, apoptosis and neurological dysfunction caused by chronic oral administration of aluminum in a mouse model of tauopathies. Brain Pathol. 2013;23(6):633–644. doi:10.1111/bpa.12059
  • Sanchez-Iglesias S, Mendez-Alvarez E, Iglesias-Gonzalez J, et al. Brain oxidative stress and selective behaviour of aluminium in specific areas of rat brain: potential effects in a 6-OHDA-induced model of Parkinson’s disease. J Neurochem. 2009;109(3):879–888. doi:10.1111/j.1471-4159.2009.06019.x
  • Sadeghi L, Tanwir F, Yousefi Babadi V. Physiological and biochemical effects of echium amoenum extract on Mn(2+)-imposed Parkinson like disorder in rats. Adv Pharm Bull. 2018;8(4):705–713. doi:10.15171/apb.2018.079
  • Burton NC, Schneider JS, Syversen T, Guilarte TR. Effects of chronic manganese exposure on glutamatergic and GABAergic neurotransmitter markers in the nonhuman primate brain. Toxicol Sci. 2009;111(1):131–139. doi:10.1093/toxsci/kfp124
  • Ali SF, Duhart HM, Newport GD, Lipe GW, Slikker W Jr. Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3. Neurodegeneration. 1995;4(3):329–334. doi:10.1016/1055-8330(95)90023-3
  • Dobson AW, Weber S, Dorman DC, Lash LK, Erikson KM, Aschner M. Oxidative stress is induced in the rat brain following repeated inhalation exposure to manganese sulfate. Biol Trace Elem Res. 2003;93(1–3):113–126. doi:10.1385/BTER:93:1-3:113
  • Erikson KM, Dorman DC, Lash LH, Dobson AW, Aschner M. Airborne manganese exposure differentially affects end points of oxidative stress in an age- and sex-dependent manner. Biol Trace Elem Res. 2004;100(1):49–62. doi:10.1385/BTER:100:1:049
  • Milatovic D, Yin Z, Gupta RC, et al. Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci. 2007;98(1):198–205. doi:10.1093/toxsci/kfm095
  • Galvani P, Fumagalli P, Santagostino A. Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur J Pharmacol. 1995;293(4):377–383. doi:10.1016/0926-6917(95)90058-6
  • Zwingmann C, Leibfritz D, Hazell AS. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. J Cereb Blood Flow Metab. 2003;23(6):756–771. doi:10.1097/01.WCB.0000056062.25434.4D
  • Singh J, Husain R, Tandon SK, Seth PK, Chandra SV. Biochemical and histopathological alterations in early manganese toxicity in rats. Environ Physiol Biochem. 1974;4(1):16–23.
  • Sloot WN, Gramsbergen JB. Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Res. 1994;657(1–2):124–132. doi:10.1016/0006-8993(94)90959-8
  • Sloot WN, van der Sluijs-Gelling AJ, Gramsbergen JB. Selective lesions by manganese and extensive damage by iron after injection into rat striatum or hippocampus. J Neurochem. 2008;62(1):205–216. doi:10.1046/j.1471-4159.1994.62010205.x
  • Parenti M, Rusconi L, Cappabianca V, Parati EA, Groppetti A. Role of dopamine in manganese neurotoxicity. Brain Res. 1988;473(2):236–240. doi:10.1016/0006-8993(88)90852-9
  • Gavin CE, Gunter KK, Gunter TE. Manganese and calcium transport in mitochondria: implications for manganese toxicity. Neurotoxicology. 1999;20(2–3):445–453.
  • Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461–491. doi:10.3233/JPD-130230
  • Erekat NS. Apoptosis and its role in Parkinson’s Disease. In: Stoker TB, Greenland JC, editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane (AU): Exon Publications; 2018.
  • Mizuno Y, Saitoh T, Sone N. Inhibition of mitochondrial NADH-ubiquinone oxidoreductase activity by 1-methyl-4-phenylpyridinium ion. Biochem Biophys Res Commun. 1987;143(1):294–299. doi:10.1016/0006-291X(87)90664-4
  • Wang YM, Pu P, Le WD. ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in alpha-synuclein transgenic C. elegans. Neurosci Bull. 2007;23(6):329–335. doi:10.1007/s12264-007-0049-3
  • Gash DM, Rutland K, Hudson NL, et al. Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity. Ann Neurol. 2008;63(2):184–192. doi:10.1002/ana.21288
  • Liu M, Choi DY, Hunter RL, et al. Trichloroethylene induces dopaminergic neurodegeneration in fisher 344 rats. J Neurochem. 2010;112(3):773–783. doi:10.1111/j.1471-4159.2009.06497.x
  • Liu M, Shin EJ, Dang DK, et al. Trichloroethylene and Parkinson’s Disease: risk assessment. Mol Neurobiol. 2018;55(7):6201–6214. doi:10.1007/s12035-017-0830-x
  • Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE. Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med. 2013;62:65–75. doi:10.1016/j.freeradbiomed.2013.01.032
  • Gubellini P, Picconi B, Di Filippo M, Calabresi P. Downstream mechanisms triggered by mitochondrial dysfunction in the basal ganglia: from experimental models to neurodegenerative diseases. Biochim Biophys Acta. 2010;1802(1):151–161. doi:10.1016/j.bbadis.2009.08.001
  • Wolozin B, Golts N. Iron and Parkinson’s disease. Neuroscientist. 2002;8(1):22–32. doi:10.1177/107385840200800107
  • Shi L, Huang C, Luo Q, et al. The association of iron and the pathologies of Parkinson’s Diseases in MPTP/MPP(+)-induced neuronal degeneration in non-human primates and in cell culture. Front Aging Neurosci. 2019;11:215. doi:10.3389/fnagi.2019.00215
  • Sherer TB, Betarbet R, Testa CM, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci. 2003;23(34):10756–10764. doi:10.1523/JNEUROSCI.23-34-10756.2003
  • Greenamyre JT, Betarbet R, Sherer TB. The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord. 2003;9(Suppl 2):S59–S64. doi:10.1016/S1353-8020(03)00023-3
  • Perier C, Bove J, Vila M, Przedborski S. The rotenone model of Parkinson’s disease. Trends Neurosci. 2003;26(7):345–346. doi:10.1016/S0166-2236(03)00144-9
  • Tawara T, Fukushima T, Hojo N, et al. Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol. 1996;70(9):585–589. doi:10.1007/s002040050316
  • Cocheme HM, Murphy MP. Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem. 2008;283(4):1786–1798. doi:10.1074/jbc.M708597200
  • Yamada K, Fukushima T. Mechanism of cytotoxicity of paraquat. II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Exp Toxicol Pathol. 1993;45(5–6):375–380. doi:10.1016/S0940-2993(11)80433-1
  • Elwan MA, Richardson JR, Guillot TS, Caudle WM, Miller GW. Pyrethroid pesticide-induced alterations in dopamine transporter function. Toxicol Appl Pharmacol. 2006;211(3):188–197. doi:10.1016/j.taap.2005.06.003
  • Hansen MRH, Jors E, Lander F, et al. Neurological deficits after long-term pyrethroid exposure. Environ Health Insights. 2017;11:1178630217700628. doi:10.1177/1178630217700628