51
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

A Comprehensive Review and Androgen Deprivation Therapy and Its Impact on Alzheimer’s Disease Risk in Older Men with Prostate Cancer

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, & show all
Pages 33-46 | Received 21 Nov 2023, Accepted 03 May 2024, Published online: 17 May 2024

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA. 2020;70(1):7–30. doi:10.3322/caac.21590
  • Center MM, Jemal A, Lortet-Tieulent J, et al. International variation in prostate cancer incidence and mortality rates. Europ Urol. 2012;61(6):1079–1092. doi:10.1016/j.eururo.2012.02.054
  • Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate cancer review: genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730. doi:10.3390/molecules27175730
  • Rebbeck TR, Devesa SS, Chang BL, et al. Global patterns of prostate cancer incidence, aggressiveness, and mortality in men of African descent. Prostate Cancer. 2013;2013:560857. doi:10.1155/2013/560857
  • Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC. Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer. 2007;121(7):1571–1578. doi:10.1002/ijc.22788
  • Achard V, Putora PM, Omlin A, Zilli T, Fischer S. Metastatic prostate cancer: treatment options. Oncology. 2022;100(1):48–59. doi:10.1159/000519861
  • Rebello RJ, Oing C, Knudsen KE, et al. Prostate cancer. Nature Reviews Disease Primers. 2021;7(1):9. doi:10.1038/s41572-020-00243-0
  • Nead KT, Gaskin G, Chester C, et al. Androgen deprivation therapy and future Alzheimer’s disease risk. J Clin Oncol. 2016;34(6):566. doi:10.1200/JCO.2015.63.6266
  • Kluger J, Roy A, Chao HH. Androgen deprivation therapy and cognitive function in prostate cancer. Current Oncol Rep. 2020;22(3):24. doi:10.1007/s11912-020-0884-1
  • Junejo NN, AlKhateeb SS. BRCA2 gene mutation and prostate cancer risk. Comprehensive review and update. Saudi Med J. 2020;41(1):9–17. doi:10.15537/smj.2020.1.24759
  • Salminen EK, Portin RI, Koskinen A, Helenius H, Nurmi M. Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clin Cancer Res. 2004;10(22):7575–7582. doi:10.1158/1078-0432.CCR-04-0750
  • Dumurgier J, Sabia S. Life expectancy in dementia subtypes: exploring a leading cause of mortality. Lancet Healthy Longevity. 2021;2(8):e449–e450. doi:10.1016/s2666-7568(21)00166-5
  • Merriel SWD, Funston G, Hamilton W. Prostate Cancer in Primary Care. Adv Ther. 2018;35(9):1285–1294. doi:10.1007/s12325-018-0766-1
  • Driver JA, Beiser A, Au R, et al. Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study. BMJ. 2012;2:344.
  • Hwang S, Jayadevappa R, Zee J, et al. Concordance between clinical diagnosis and Medicare claims of depression among older primary care patients. Am J Geriatric Psychiatry. 2015;23(7):726–734. doi:10.1016/j.jagp.2014.08.009
  • Bhoir S, De Benedetti A. Targeting prostate cancer, the ‘tousled way’. Int J Mol Sci. 2023;24(13):11100. doi:10.3390/ijms241311100
  • Sari Motlagh R, Quhal F, Mori K, et al. The risk of new onset dementia and/or Alzheimer disease among patients with prostate cancer treated with androgen deprivation therapy: a systematic review and meta-analysis. J Urol. 2021;205(1):60–67. doi:10.1097/ju.0000000000001341
  • Azam MF, Musa A, Dehmer M, Yli-Harja OP, Emmert-Streib F. Global genetics research in prostate cancer: a text mining and computational network theory approach Original Research. Front Gene. 2019;10. doi:10.3389/fgene.2019.00070
  • Chung LW, Baseman A, Assikis V, Zhau HE. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol. 2005;173(1):10–20. doi:10.1097/01.ju.0000141582.15218.10
  • Prensner JR, Chinnaiyan AM. Oncogenic gene fusions in epithelial carcinomas. Curr Opin Genet Dev. 2009;19(1):82–91. doi:10.1016/j.gde.2008.11.008
  • Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17(5):284–299. doi:10.1038/nrg.2016.13
  • Thomson DW, Shahrin NH, Wang PP, et al. Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia. Leukemia. 2020;34(8):2051–2063. doi:10.1038/s41375-020-0751-y
  • Vafadar A, Shabaninejad Z, Movahedpour A, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 2020;10(1):32. doi:10.1186/s13578-020-00397-0
  • Sheffels E, Sealover NE, Theard PL, Kortum RL. Anchorage-independent growth conditions reveal a differential SOS2 dependence for transformation and survival in RAS-mutant cancer cells. Small GTPases. 2021;12(1):67–78. doi:10.1080/21541248.2019.1611168
  • Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK Pathway in Cancer Evolution and Treatment. Elsevier; 2022:123–154.
  • Quintero-Fabián S, Arreola R, Becerril-Villanueva E, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Review. Front Oncol. 2019;2019:9. doi:10.3389/fonc.2019.01370
  • Rosenwald A, Bens S, Advani R, et al. Prognostic Significance of MYC rearrangement and translocation partner in diffuse large B-Cell lymphoma: a study by the Lunenburg Lymphoma Biomarker Consortium. J Clin Oncol. 2019;37(35):3359–3368. doi:10.1200/jco.19.00743
  • Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TLJ, Visakorpi T. MicroRNA expression profiling in prostate cancer. Cancer Res. 2007;67(13):6130–6135. doi:10.1158/0008-5472.can-07-0533
  • Shinde P, Marrec L, Rai A, et al. Symmetry in cancer networks identified: proposal for multicancer biomarkers. Network Sci. 2019;7(4):541–555. doi:10.1017/nws.2019.55
  • Brown D, Oetzel J, Henderson A. Communication networks of men facing a diagnosis of prostate cancer. J Clin Nurs. 2016;25(21–22):3266–3278. doi:10.1111/jocn.13369
  • Ammah AA, Do DN, Bissonnette N, Gévry N, Ibeagha-Awemu EM. Co-expression network analysis identifies miRNA–mRNA networks potentially regulating milk traits and blood metabolites. Int J Mol Sci. 2018;19(9):2500. doi:10.3390/ijms19092500
  • Bee A, Brewer D, Beesley C, et al. siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One. 2011;6(7):e22672. doi:10.1371/journal.pone.0022672
  • Yong WH, Shabihkhani M, Telesca D, et al. Ribosomal proteins RPS11 and RPS20, two stress-response markers of glioblastoma stem cells, are novel predictors of poor prognosis in glioblastoma patients. PLoS One. 2015;10(10):e0141334. doi:10.1371/journal.pone.0141334
  • Dai M-S, Arnold H, Sun -X-X, Sears R, Lu H. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J. 2007;26(14):3332–3345. doi:10.1038/sj.emboj.7601776
  • Meng X, Tackmann NR, Liu S, et al. RPL23 links oncogenic RAS signaling to p53-mediated tumor suppression. Cancer Res. 2016;76(17):5030–5039. doi:10.1158/0008-5472.CAN-15-3420
  • Golomb L, Volarevic S, Oren M. P53 and ribosome biogenesis stress: the essentials. FEBS Lett. 2014;588. doi:10.1016/j.febslet.2014.04.014
  • Shao J, Wang L, Zhong C, Qi R, Li Y. AHSA1 regulates proliferation, apoptosis, migration, and invasion of osteosarcoma. Biomed Pharmacother. 2016;77:45–51. doi:10.1016/j.biopha.2015.11.008
  • Qiu N, He Y, Zhang S, Hu X, Chen M, Li H. Cullin 7 is a predictor of poor prognosis in breast cancer patients and is involved in the proliferation and invasion of breast cancer cells by regulating the cell cycle and microtubule stability. Oncol Rep. 2018;39(2):603–610. doi:10.3892/or.2017.6106
  • Tian P, Liu D, Sun L, Sun H. Cullin7 promotes epithelial‑mesenchymal transition of esophageal carcinoma via the ERK‑SNAI2 signaling pathway. Mole Med Rep. 2018;17(4):5362–5367. doi:10.3892/mmr.2018.8503
  • Schipany K, Rosner M, Ionce L, Hengstschläger M, Kovacic B. eIF3 controls cell size independently of S6K1-activity. Oncotarget. 2015;6(27):24361–24375. doi:10.18632/oncotarget.4458
  • Perlaky L, Valdez BC, Busch RK, et al. Increased growth of NIH/3T3 cells by transfection with human p120 complementary DNA and inhibition by a p120 antisense construct. Cancer Res. 1992;52(2):428–436.
  • Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signaling. 2009;11(9):2307–2316. doi:10.1089/ars.2009.2485
  • Cerezo M, Rocchi S. New anti-cancer molecules targeting HSPA5/BIP to induce endoplasmic reticulum stress, autophagy and apoptosis. Autophagy. 2017;13(1):216–217. doi:10.1080/15548627.2016.1246107
  • Watanabe D, Kimura T, Yamashita A, Minowa T, Miura K, Mizushima A. The influence of androgen deprivation therapy on Hip geometric properties and bone mineral density in Japanese men with prostate cancer and its relationship with the visceral fat accumulation. Aging Male. 2020;23(5):1158–1164. doi:10.1080/13685538.2020.1713741
  • Nadiminty N, Tummala R, Lou W, et al. MicroRNA let-7c Is downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One. 2012;7(3):e32832. doi:10.1371/journal.pone.0032832
  • Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci. 2005;102(39):13944–13949. doi:10.1073/pnas.0506654102
  • Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC. Coordinate Suppression of ERBB2 and ERBB3 by Enforced Expression of Micro-RNA miR-125a or miR-125b*. J Biol Chem. 2007;282(2):1479–1486. doi:10.1074/jbc.M609383200
  • Rowley KHM, Mason MD. The aetiology and pathogenesis of prostate cancer. Clin Oncol. 1997;9(4):213–218. doi:10.1016/S0936-6555(97)80003-9
  • Chen H, Zhou L, Wu X, et al. The PI3K/AKT pathway in the pathogenesis of prostate cancer. Front Biosci. 2016;21(5):1084–1091. doi:10.2741/4443
  • Cumberbatch MGK, Noon AP. Epidemiology, aetiology and screening of bladder cancer. Transl Androlo Urol. 2019;8(1):5–11. doi:10.21037/tau.2018.09.11
  • Liu J-M, Shen C-Y, Lau WCY, et al. Association between androgen deprivation therapy and risk of dementia in men with prostate cancer. Cancers. 2021;13(15):3861. doi:10.3390/cancers13153861
  • Sun M, Wang Y, Sundquist J, Sundquist K, Ji J. The association between cancer and dementia: a national cohort study in Sweden. original research. Front Oncol. 2020;10. doi:10.3389/fonc.2020.00073
  • Jhan JH, Yang YH, Chang YH, Guu SJ, Tsai CC. Hormone therapy for prostate cancer increases the risk of Alzheimer’s disease: a nationwide 4-year longitudinal cohort study. Aging Male. 2017;20(1):33–38. doi:10.1080/13685538.2016.1271782
  • Achard V, Ceyzériat K, Tournier BB, Frisoni GB, Garibotto V, Zilli T. Biomarkers to evaluate androgen deprivation therapy for prostate cancer and risk of Alzheimer’s disease and neurodegeneration: old drugs, new concerns. Review. Front Oncol. 2021;11. doi:10.3389/fonc.2021.734881
  • Qian C, Yang C, Lu M, et al. Activating AhR alleviates cognitive deficits of Alzheimer’s disease model mice by upregulating endogenous Aβ catabolic enzyme Neprilysin. Theranostics. 2021;11(18):8797–8812. doi:10.7150/thno.61601
  • Marr RA, Spencer BJ. NEP-like endopeptidases and Alzheimer’s disease [corrected]. Current Alzheimer Res. 2010;7(3):223–229. doi:10.2174/156720510791050849
  • Shim M, Bang WJ, Oh CY, Lee YS, Cho JS. Androgen deprivation therapy and risk of cognitive dysfunction in men with prostate cancer: is there a possible link? Prostate international. Mar. 2022;10(1):68–74. doi:10.1016/j.prnil.2021.02.002
  • Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem. 2019;85:82–96. doi:10.1016/j.bioorg.2018.12.017
  • Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem. 2019;163:116–135. doi:10.1016/j.ejmech.2018.11.049
  • Shim M, Bang WJ, Oh CY, et al. Risk of dementia and Parkinson’s disease in patients treated with androgen deprivation therapy using gonadotropin-releasing hormone agonist for prostate cancer: a nationwide population-based cohort study. PLoS One. 2020;15(12):e0244660. doi:10.1371/journal.pone.0244660
  • Jayadevappa R, Chhatre S, Malkowicz SB, Parikh RB, Guzzo T, Wein AJ. Association between androgen deprivation therapy use and diagnosis of dementia in men with prostate cancer. JAMA network open. 2019;2(7):e196562. doi:10.1001/jamanetworkopen.2019.6562
  • Barrett-Connor E, Laughlin GA. Endogenous and Exogenous Estrogen, Cognitive Function, and Dementia in Postmenopausal Women: Evidence from Epidemiologic Studies and Clinical Trials. © Thieme Medical Publishers; 2009:275–282.
  • Beauchet O. Testosterone and cognitive function: current clinical evidence of a relationship. European J Endocrinol. 2006;155(6):773–781. doi:10.1530/eje.1.02306
  • Kenny AM, Bellantonio S, Gruman CA, Acosta RD, Prestwood KM. Effects of transdermal testosterone on cognitive function and health perception in older men with low bioavailable testosterone levels. J Gerontol Ser A. 2002;57(5):M321–5. doi:10.1093/gerona/57.5.m321
  • Jiménez-Rubio G, Herrera-Pérez JJ, Hernández O, Martínez-Mota L. Relationship between androgen deficiency and memory impairment in aging and Alzheimer’s disease. Actas Espanolas de Psiquiatria. 2017;45(5):227–247.
  • Zachariae R, Buus S, Buus S, et al. Cognitive impairment and associations with structural brain networks, endocrine status, and risk genotypes in patients with newly diagnosed prostate cancer referred to androgen-deprivation therapy. Cancer. 2021;127(9):1495–1506. doi:10.1002/cncr.33387
  • Gallus S, Foschi R, Talamini R, et al. Risk factors for prostate cancer in men aged less than 60 years: a case–control study from Italy. Urology. 2007;70(6):1121–1126. doi:10.1016/j.urology.2007.07.020
  • Reiss A, Saeedullah U, Grossfeld D, Glass A, Pinkhasov A, Katz AE. Prostate cancer treatment and the relationship of androgen deprivation therapy to cognitive function. Clin Transl Oncol. 2021;3:1–9.
  • Robinson D, Garmo H, Van Hemelrijck M, et al. Androgen deprivation therapy for prostate cancer and risk of dementia. BJU Int. 2019;124(1):87–92. doi:10.1111/bju.14666
  • Arya A, Ahmad H, Khandelwal K, Agrawal S, Dwivedi A. Novel multifunctional nanocarrier-mediated codelivery for targeting and treatment of prostate cancer. InNanomat Drug Deliv Ther. 2019;3:185–224.
  • Perry G, Cortezon-Tamarit F, Pascu S. Detection and monitoring prostate specific antigen using nanotechnology approaches to biosensing. Front Chem Sci Eng. 2019;14. doi:10.1007/s11705-019-1846-8
  • Nevedomskaya E, Baumgart SJ, Haendler B. Recent advances in prostate cancer treatment and drug discovery. Int J Mol Sci. 2018;19(5):1359. doi:10.3390/ijms19051359
  • Nagesh PK, Chowdhury P, Hatami E, et al. Cross-linked polyphenol-based drug nano-self-assemblies engineered to blockade prostate cancer senescence. ACS Appl Mater Interfaces. 2019;11(42):38537–38554. doi:10.1021/acsami.9b14738
  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 2005;23(10):1294–1301. doi:10.1038/nbt1138
  • Li X, Li W, Yang Q, et al. Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl Mater Interfaces. 2014;6(9):6406–6414. doi:10.1021/am5012782
  • Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc. 2006;128(34):11199–11205. doi:10.1021/ja062117e
  • Song E-Q, Hu J, Wen C-Y, et al. Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS nano. 2011;5(2):761–770. doi:10.1021/nn1011336
  • Koo KM, Dey S, Trau M. Amplification-free multi-RNA-Type profiling for cancer risk stratification via alternating current electrohydrodynamic nanomixing. Small. 2018;14(17):1704025. doi:10.1002/smll.201704025
  • Xu S, Liu Y, Wang T, Li J. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal. Chem. 2011;83(10):3817–3823. doi:10.1021/ac200237j
  • Koo KM, Mainwaring PN, Tomlins SA, Trau M. Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol. 2019;16(5):302–317. doi:10.1038/s41585-019-0178-2
  • Fabris L, Ceder Y, Chinnaiyan AM, et al. The potential of microRNAs as prostate cancer biomarkers. Europ Urol. 2016;70(2):312–322. doi:10.1016/j.eururo.2015.12.054
  • Prensner JR, Iyer MK, Sahu A, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature Genet. 2013;45(11):1392–1398. doi:10.1038/ng.2771
  • Shah RB, Chinnaiyan AM. The discovery of common recurrent transmembrane protease serine 2 (TMPRSS2)-erythroblastosis virus E26 transforming sequence (ETS) gene fusions in prostate cancer: significance and clinical implications. Adv Anatomic Pathol. 2009;16(3):145–153. doi:10.1097/PAP.0b013e3181a12da7
  • Kumar-Sinha C, Kalyana-Sundaram S, Chinnaiyan AM. Landscape of gene fusions in epithelial cancers: seq and ye shall find. Genome Med. 2015;7(1):129. doi:10.1186/s13073-015-0252-1
  • Edwards PA. Fusion genes and chromosome translocations in the common epithelial cancers. J Pathol. 2010;220(2):244–254. doi:10.1002/path.2632
  • Haile S, Sadar MD. Androgen receptor and its splice variants in prostate cancer. Cell. Mol. Life Sci. 2011;68(24):3971–3981. doi:10.1007/s00018-011-0766-7
  • Ware KE, Garcia-Blanco MA, Armstrong AJ, Dehm SM. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocrine Related Cancer. 2014;21(4):T87–T103. doi:10.1530/ERC-13-0470
  • Phin S, Moore M, Cotter P. Genomic rearrangements of PTEN in prostate cancer. Review. Front Oncol. 2013;3:3. doi:10.3389/fonc.2013.00240
  • Lotan TL, Heumann A, Rico SD, et al. PTEN loss detection in prostate cancer: comparison of PTEN immunohistochemistry and PTEN FISH in a large retrospective prostatectomy cohort. Oncotarget. 2017;8(39):65566. doi:10.18632/oncotarget.19217
  • Punnoose EA, Ferraldeschi R, Szafer-Glusman E, et al. PTEN loss in circulating tumour cells correlates with PTEN loss in fresh tumour tissue from castration-resistant prostate cancer patients. Br J Cancer. 2015;113(8):1225–1233. doi:10.1038/bjc.2015.332
  • Day JR, Jost M, Reynolds MA, Groskopf J, Rittenhouse H. PCA3: from basic molecular science to the clinical lab. Cancer Lett. 2011;301(1):1–6. doi:10.1016/j.canlet.2010.10.019
  • Ferreira LB, Palumbo A, de Mello KD, et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer. 2012;12(1):507. doi:10.1186/1471-2407-12-507
  • Wade CA, Kyprianou N. Profiling prostate cancer therapeutic resistance. Int J Mol Sci. 2018;19(3):904. doi:10.3390/ijms19030904
  • Marzouk S, Naglie G, Tomlinson G, et al. Impact of androgen deprivation therapy on self-reported cognitive function in men with prostate cancer. J Urol. 2018;200(2):327–334. doi:10.1016/j.juro.2018.02.073
  • Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial Dysfunction: a Potential Therapeutic Target to Treat Alzheimer’s Disease. Mol Neurobiol. 2020;57(7):3075–3088. doi:10.1007/s12035-020-01945-y
  • Rai SN, Zahra W, Birla H, Singh SS, Singh SP. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci. 2018;10:192. Published. doi:10.3389/fnagi.2018.00192
  • Nead KT, Gaskin G, Chester C, Swisher-McClure S, Leeper NJ, Shah NH. Association between androgen deprivation therapy and risk of dementia. JAMA Oncol. 2017;3(1):49–55. doi:10.1001/jamaoncol.2016.3662
  • Adeloye D, David RA, Aderemi AV, et al. An estimate of the incidence of prostate cancer in Africa: a systematic review and meta-analysis. PLoS One. 2016;11(4):e0153496. doi:10.1371/journal.pone.0153496
  • Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17–18):1105–1140. doi:10.1101/gad.315739.118
  • Nguyen PL, Alibhai SMH, Basaria S, et al. Adverse effects of androgen deprivation therapy and strategies to mitigate them. Europ Urol. 2015;67(5):825–836. doi:10.1016/j.eururo.2014.07.010
  • Aurilio G, Cimadamore A, Mazzucchelli R, et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells. 2020;9(12):2653. doi:10.3390/cells9122653