185
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Integral Role of Chloride & With-No-Lysine Kinases in Cell Volume Regulation & Hypertension

Pages 183-196 | Received 18 Apr 2023, Accepted 28 Jul 2023, Published online: 14 Aug 2023

References

  • Strange K. Cellular volume homeostasis. Adv Physiol Educ. 2004;28(1–4):155–159. doi:10.1152/advan.00034.2004
  • McManus ML, Churchwell KB, Strange K. Regulation of cell volume in health and disease. N Engl J Med. 1995;333(19):1260–1266. doi:10.1056/NEJM199511093331906
  • McCormick JA, Yang CL, Ellison DH. WNK kinases and renal sodium transport in health and disease: an integrated view. Hypertension. 2008;51(3):588–596. doi:10.1161/HYPERTENSIONAHA.107.103788
  • Orlov SN, Koltsova SV, Kapilevich LV, Gusakova SV, Dulin NO. NKCC1 and NKCC2: the pathogenetic role of cation-chloride cotransporters in hypertension. Genes Dis. 2015;2(2):186–196. doi:10.1016/j.gendis.2015.02.007
  • Palmer LG, Schnermann J. Integrated control of Na transport along the nephron. Clin J Am Soc Nephrol. 2015;10(4):676–687. doi:10.2215/CJN.12391213
  • Delpire E, Gagnon KB. Water homeostasis and cell volume maintenance and regulation. Curr Top Membr. 2018;81:3–52.
  • De Smet P, Simaels J, Declercq PE, Van Driessche W. Regulatory volume decrease in cultured kidney cells (A6): role of amino acids. J Gen Physiol. 1995;106(3):525–542. doi:10.1085/jgp.106.3.525
  • Lopez-Cayuqueo KI, Planells-Cases R, Pietzke M, et al. Renal Deletion of LRRC8/VRAC channels induces proximal tubulopathy. J Am Soc Nephrol. 2022;33(8):1528–1545. doi:10.1681/ASN.2021111458
  • Baturina GS, Katkova LE, Schmitt CP, Solenov EI, Zarogiannis SG. Comparison of isotonic activation of cell volume regulation in rat peritoneal mesothelial cells and in kidney outer medullary collecting duct principal cells. Biomolecules. 2021;11(10):1452. doi:10.3390/biom11101452
  • Hoffmann EK, Simonsen LO. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 1989;69(2):315–382. doi:10.1152/physrev.1989.69.2.315
  • Sardini A, Amey JS, Weylandt KH, Nobles M, Valverde MA, Higgins CF. Cell volume regulation and swelling-activated chloride channels. Biochim Biophys Acta. 2003;1618(2):153–162. doi:10.1016/j.bbamem.2003.10.008
  • Qiu Z, Dubin AE, Mathur J, et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell. 2014;157(2):447–458. doi:10.1016/j.cell.2014.03.024
  • Voss FK, Ullrich F, Munch J, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 2014;344(6184):634–638. doi:10.1126/science.1252826
  • Konig B, Stauber T. Biophysics and structure-function relationships of LRRC8-formed volume-regulated anion channels. Biophys J. 2019;116(7):1185–1193. doi:10.1016/j.bpj.2019.02.014
  • Kregenow FM. The response of duck erythrocytes to hypertonic media. Further evidence for a volume-controlling mechanism. J Gen Physiol. 1971;58(4):396–412. doi:10.1085/jgp.58.4.396
  • Valles PG, Bocanegra V, Gil Lorenzo A, Costantino VV. Physiological functions and regulation of the Na+/H+ Exchanger [NHE1] in renal tubule epithelial cells. Kidney Blood Press Res. 2015;40(5):452–466. doi:10.1159/000368521
  • Astapenko D, Navratil P, Pouska J, Cerny V. Clinical physiology aspects of chloremia in fluid therapy: a systematic review. Perioper Med. 2020;9(1):40. doi:10.1186/s13741-020-00171-3
  • Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev. 2009;89(1):193–277. doi:10.1152/physrev.00037.2007
  • Rinehart J, Maksimova YD, Tanis JE, et al. Sites of regulated phosphorylation that control K-Cl cotransporter activity. Cell. 2009;138(3):525–536. doi:10.1016/j.cell.2009.05.031
  • Shekarabi M, Zhang J, Khanna AR, Ellison DH, Delpire E, Kahle KT. WNK kinase signaling in ion homeostasis and human disease. Cell Metab. 2017;25(2):285–299. doi:10.1016/j.cmet.2017.01.007
  • Luscher BP, Vachel L, Ohana E, Muallem S. Cl(-) as a bona fide signaling ion. Am J Physiol Cell Physiol. 2020;318(1):C125–C136. doi:10.1152/ajpcell.00354.2019
  • Doyon N, Vinay L, Prescott SA, De Koninck Y. Chloride regulation: a dynamic equilibrium crucial for synaptic inhibition. Neuron. 2016;89(6):1157–1172. doi:10.1016/j.neuron.2016.02.030
  • Jentsch TJ, Pusch M. CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev. 2018;98(3):1493–1590. doi:10.1152/physrev.00047.2017
  • Martinez AH, Mohiuddin SS. Biochemistry, Chloride Channels. In: StatPearls. Treasure Island (FL): StatPearls; 2022.
  • Teulon J, Planelles G, Sepulveda FV, Andrini O, Lourdel S, Paulais M. Renal chloride channels in relation to sodium chloride transport. Compr Physiol. 2018;9(1):301–342.
  • Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev. 2005;85(2):423–493. doi:10.1152/physrev.00011.2004
  • Garneau AP, Marcoux AA, Slimani S, et al. Physiological roles and molecular mechanisms of K(+) -Cl(-) cotransport in the mammalian kidney and cardiovascular system: where are we? J Physiol. 2019;597(6):1451–1465. doi:10.1113/JP276807
  • Pusch M, Jordt SE, Stein V, Jentsch TJ. Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999;515:341–353. doi:10.1111/j.1469-7793.1999.341ac.x
  • Castaneda-Bueno M, Ellison DH, Gamba G. Molecular mechanisms for the modulation of blood pressure and potassium homeostasis by the distal convoluted tubule. EMBO Mol Med. 2022;14(2):e14273. doi:10.15252/emmm.202114273
  • Filippini T, Naska A, Kasdagli MI, et al. Potassium intake and blood pressure: a dose-response meta-analysis of randomized controlled trials. J Am Heart Assoc. 2020;9(12):e015719. doi:10.1161/JAHA.119.015719
  • Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem. 2000;275(22):16795–16801. doi:10.1074/jbc.275.22.16795
  • Jonniya NA, Sk MF, Kar P. Investigating phosphorylation-induced conformational changes in WNK1 kinase by molecular dynamics simulations. ACS Omega. 2019;4(17):17404–17416. doi:10.1021/acsomega.9b02187
  • Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005;391(Pt 1):17–24. doi:10.1042/BJ20051180
  • Pacheco-Alvarez D, Cristobal PS, Meade P, et al. The Na+:Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J Biol Chem. 2006;281(39):28755–28763. doi:10.1074/jbc.M603773200
  • Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal. 2014;7(324):ra41. doi:10.1126/scisignal.2005050
  • Terker AS, Zhang C, McCormick JA, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21(1):39–50. doi:10.1016/j.cmet.2014.12.006
  • Cuevas CA, Su XT, Wang MX, et al. Potassium sensing by renal distal tubules requires kir4.1. J Am Soc Nephrol. 2017;28(6):1814–1825. doi:10.1681/ASN.2016090935
  • Wang MX, Cuevas CA, Su XT, et al. Potassium intake modulates the thiazide-sensitive sodium-chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int. 2018;93(4):893–902. doi:10.1016/j.kint.2017.10.023
  • Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90(1):291–366. doi:10.1152/physrev.00021.2009
  • Penton D, Czogalla J, Wengi A, et al. Extracellular K(+) rapidly controls NaCl cotransporter phosphorylation in the native distal convoluted tubule by Cl(-) -dependent and independent mechanisms. J Physiol. 2016;594(21):6319–6331. doi:10.1113/JP272504
  • Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the renal NaCl cotransporter and its role in potassium homeostasis. Physiol Rev. 2020;100(1):321–356. doi:10.1152/physrev.00044.2018
  • Pleinis JM, Norrell L, Akella R, et al. WNKs are potassium-sensitive kinases. Am J Physiol Cell Physiol. 2021;320(5):C703–C721. doi:10.1152/ajpcell.00456.2020
  • Akella R, Humphreys JM, Sekulski K, et al. Osmosensing by WNK Kinases. Mol Biol Cell. 2021;32(18):1614–1623. doi:10.1091/mbc.E20-01-0089
  • Hoenig MP, Zeidel ML. Homeostasis, the milieu interieur, and the wisdom of the nephron. Clin J Am Soc Nephrol. 2014;9(7):1272–1281. doi:10.2215/CJN.08860813
  • Palmer BF. Regulation of potassium homeostasis. Clin J Am Soc Nephrol. 2015;10(6):1050–1060. doi:10.2215/CJN.08580813
  • Sands JM, Layton HE. The physiology of urinary concentration: an update. Semin Nephrol. 2009;29(3):178–195. doi:10.1016/j.semnephrol.2009.03.008
  • Eaton SB, Eaton SB, Konner MJ. Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr. 1997;51(4):207–216. doi:10.1038/sj.ejcn.1600389
  • Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342(20):1493–1499. doi:10.1056/NEJM200005183422006
  • Sebastian A, Frassetto LA, Sellmeyer DE, Morris RC Jr. The evolution-informed optimal dietary potassium intake of human beings greatly exceeds current and recommended intakes. Semin Nephrol. 2006;26(6):447–453. doi:10.1016/j.semnephrol.2006.10.003
  • Roberts WC. Facts and ideas from anywhere. Proc Bayl Univ Med Cent. 2021;34(3):434–436. doi:10.1080/08998280.2021.1902727
  • Murillo-de-Ozores AR, Carbajal-Contreras H, Magana-Avila GR, et al. Multiple molecular mechanisms are involved in the activation of the kidney sodium-chloride cotransporter by hypokalemia. Kidney Int. 2022;102(5):1030–1041. doi:10.1016/j.kint.2022.06.027