223
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification and Analysis of ZIC-Related Genes in Cerebellum of Autism Spectrum Disorders

, , , , &
Pages 325-339 | Received 14 Nov 2023, Accepted 09 Feb 2024, Published online: 21 Feb 2024

References

  • Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM). Codas. 2013;25(2):191–192. doi:10.1590/s2317-17822013000200017
  • Maenner MJ, Warren Z, Williams AR, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ. 2023;72(2):1–14. doi:10.15585/mmwr.ss7202a1
  • Schaefer GB, Mendelsohn NJ. Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet Med. 2008;10(1):4–12. doi:10.1097/GIM.0b013e31815efdd7
  • Masi A, DeMayo MM, Glozier N, Guastella AJ. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci Bull. 2017;33(2):183–193. doi:10.1007/s12264-017-0100-y
  • Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: current progress. Clin Chim Acta. 2020;502:41–54. doi:10.1016/j.cca.2019.12.009
  • Kelly E, Meng F, Fujita H, et al. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci. 2020;23(9):1102–1110. doi:10.1038/s41593-020-0665-z
  • Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci. 2019;20(5):298–313. doi:10.1038/s41583-019-0152-2
  • Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424). doi:10.1126/science.aav0581
  • Sussman D, Leung RC, Chakravarty MM, Lerch JP, Taylor MJ. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain Behav. 2016;6(4):e00457. doi:10.1002/brb3.457
  • Chambers T, Escott-Price V, Legge S, et al. Genetic common variants associated with cerebellar volume and their overlap with mental disorders: a study on 33,265 individuals from the UK-Biobank. Mol Psychiatry. 2022;27(4):2282–2290. doi:10.1038/s41380-022-01443-8
  • Suliman-Lavie R, Title B, Cohen Y, et al. Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior in mice. Nat Commun. 2020;11(1):5836. doi:10.1038/s41467-020-19577-0
  • Li H, Wang X, Hu C, et al. JUN and PDGFRA as crucial candidate genes for childhood autism spectrum disorder. Front Neuroinf. 2022;16:800079. doi:10.3389/fninf.2022.800079
  • Herrera E. Rodent zic genes in neural network wiring. Adv Exp Med Biol. 2018;1046:209–230.
  • Aruga J, Millen KJ. ZIC1 function in normal cerebellar development and human developmental pathology. Adv Exp Med Biol. 2018;1046:249–268.
  • Bataller L, Wade DF, Fuller GN, Rosenfeld MR, Dalmau J. Cerebellar degeneration and autoimmunity to zinc-finger proteins of the cerebellum. Neurology. 2002;59(12):1985–1987. doi:10.1212/01.WNL.0000038352.01415.CE
  • Blank MC, Grinberg I, Aryee E, et al. Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis. Development. 2011;138(6):1207–1216. doi:10.1242/dev.054114
  • Frank CL, Liu F, Wijayatunge R, et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci. 2015;18(5):647–656. doi:10.1038/nn.3995
  • Budisteanu M, Papuc SM, Streata I, et al. The phenotypic spectrum of 15q13.3 region duplications: report of 5 patients. Genes. 2021;12(7):1025. doi:10.3390/genes12071025
  • Aruga J. Zic family proteins in emerging biomedical studies. Adv Exp Med Biol. 2018;1046:233–248.
  • Hatayama M, Ishiguro A, Iwayama Y, et al. Zic2 hypomorphic mutant mice as a schizophrenia model and ZIC2 mutations identified in schizophrenia patients. Sci Rep. 2011;1(1):16. doi:10.1038/srep00016
  • Ali RG, Bellchambers HM, Warr N, et al. WNT-responsive SUMOylation of ZIC5 promotes murine neural crest cell development, having multiple effects on transcription. J Cell Sci. 2021;134(9). doi:10.1242/jcs.256792
  • Voineagu I, Wang X, Johnston P, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474(7351):380–384. doi:10.1038/nature10110
  • Ginsberg MR, Rubin RA, Falcone T, Ting AH, Natowicz MR, Landsberger N. Brain transcriptional and epigenetic associations with autism. PLoS One. 2012;7(9):e44736. doi:10.1371/journal.pone.0044736
  • Griesi-Oliveira K, Fogo MS, Pinto B, et al. Transcriptome of iPSC-derived neuronal cells reveals a module of co-expressed genes consistently associated with autism spectrum disorder. Mol Psychiatry. 2021;26(5):1589–1605. doi:10.1038/s41380-020-0669-9
  • Zhou G, Soufan O, Ewald J, Hancock R, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234–W241. doi:10.1093/nar/gkz240
  • Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi:10.1126/science.1260419
  • Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220. doi:10.1186/s13059-017-1349-1
  • Tiveron MC, Beclin C, Murgan S, et al. Zic-proteins are repressors of dopaminergic forebrain fate in mice and C. elegans. J Neurosci. 2017;37(44):10611–10623. doi:10.1523/JNEUROSCI.3888-16.2017
  • Bian WJ, Brewer CL, Kauer JA, de Lecea L. Adolescent sleep shapes social novelty preference in mice. Nat Neurosci. 2022;25(7):912–923. doi:10.1038/s41593-022-01076-8
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. doi:10.1016/S0140-6736(14)61393-3
  • Wile DJ, Agarwal PA, Schulzer M, et al. Serotonin and dopamine transporter PET changes in the premotor phase of LRRK2 parkinsonism: cross-sectional studies. Lancet Neurol. 2017;16(5):351–359. doi:10.1016/S1474-4422(17)30056-X
  • Pang K, Jiang R, Zhang W, et al. An App knock-in rat model for Alzheimer’s disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res. 2022;32(2):157–175. doi:10.1038/s41422-021-00582-x
  • Zhang M, Wang Q, Huang Y. Fragile X mental retardation protein FMRP and the RNA export factor NXF2 associate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci U S A. 2007;104(24):10057–10062. doi:10.1073/pnas.0700169104
  • Stutz F, Izaurralde E. The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends Cell Biol. 2003;13(6):319–327. doi:10.1016/S0962-8924(03)00106-5
  • Nunomura A, Lee HG, Zhu X, Perry G. Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochem Soc Trans. 2017;45(5):1053–1066. doi:10.1042/BST20160433
  • Bai B, Wang X, Li Y, et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron. 2020;105(6):975–991.e7. doi:10.1016/j.neuron.2019.12.015
  • Tang S, Wang T, Zhang X, et al. Olfactomedin-3 enhances seizure activity by interacting with AMPA receptors in epilepsy models. Front Cell Dev Biol. 2020;8:722. doi:10.3389/fcell.2020.00722
  • Yousefi B, Kokhaei P, Mehranfar F, et al. The role of the host microbiome in autism and neurodegenerative disorders and effect of epigenetic procedures in the brain functions. Neurosci Biobehav Rev. 2022;132:998–1009. doi:10.1016/j.neubiorev.2021.10.046
  • Maekawa M, Iwayama Y, Ohnishi T, et al. Investigation of the fatty acid transporter-encoding genes SLC27A3 and SLC27A4 in autism. Sci Rep. 2015;5:16239. doi:10.1038/srep16239
  • Barratt KS, Arkell RM. ZIC2 in holoprosencephaly. Adv Exp Med Biol. 2018;1046:269–299.
  • Pourebrahim R, Houtmeyers R, Ghogomu S, et al. Transcription factor Zic2 inhibits Wnt/β-catenin protein signaling. J Biol Chem. 2011;286(43):37732–37740. doi:10.1074/jbc.M111.242826
  • Caracci MO, Avila ME, Espinoza-Cavieres FA, López HR, Ugarte GD, De Ferrari GV. Wnt/β-catenin-dependent transcription in autism spectrum disorders. Front Mol Neurosci. 2021;14:764756. doi:10.3389/fnmol.2021.764756
  • Krumm N, O’Roak BJ, Shendure J, Eichler EE. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 2014;37(2):95–105. doi:10.1016/j.tins.2013.11.005
  • Das SK, Tan J, Raja S, Halder J, Paria BC, Dey SK. Estrogen targets genes involved in protein processing, calcium homeostasis, and Wnt signaling in the mouse uterus independent of estrogen receptor-alpha and -beta. J Biol Chem. 2000;275(37):28834–28842. doi:10.1074/jbc.M003827200
  • Lorzadeh S, Kohan L, Ghavami S, Azarpira N. Autophagy and the Wnt signaling pathway: a focus on Wnt/β-catenin signaling. Biochim Biophys Acta Mol Cell Res. 2021;1868(3):118926. doi:10.1016/j.bbamcr.2020.118926
  • Qin L, Dai X, Yin Y. Valproic acid exposure sequentially activates Wnt and mTOR pathways in rats. Mol Cell Neurosci. 2016;75:27–35. doi:10.1016/j.mcn.2016.06.004
  • Zhang Y, Xiang Z, Jia Y, He X, Wang L, Cui W. The Notch signaling pathway inhibitor Dapt alleviates autism-like behavior, autophagy and dendritic spine density abnormalities in a valproic acid-induced animal model of autism. Prog Neuropsychopharmacol Biol Psychiatry. 2019;94:109644. doi:10.1016/j.pnpbp.2019.109644
  • Dana H, Bayramov KK, Delibaşı N, et al. Disregulation of autophagy in the transgenerational Cc2d1a mouse model of autism. Neuromolecular Med. 2020;22(2):239–249. doi:10.1007/s12017-019-08579-x
  • Gawande DY, Narasimhan KKS, Bhatt JM, et al. Glutamate delta 1 receptor regulates autophagy mechanisms and affects excitatory synapse maturation in the somatosensory cortex. Pharmacol Res. 2022;178:106144. doi:10.1016/j.phrs.2022.106144
  • Crampton SP, Wu B, Park EJ, et al. Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2. PLoS One. 2009;4(11):e7841. doi:10.1371/journal.pone.0007841
  • Zhou L, Talebian A, Meakin SO. The signaling adapter, FRS2, facilitates neuronal branching in primary cortical neurons via both Grb2- and Shp2-dependent mechanisms. J Mol Neurosci. 2015;55(3):663–677. doi:10.1007/s12031-014-0406-4
  • Ma L, Huang YZ, Pitcher GM, et al. Ligand-dependent recruitment of the ErbB4 signaling complex into neuronal lipid rafts. J Neurosci. 2003;23(8):3164–3175. doi:10.1523/JNEUROSCI.23-08-03164.2003
  • Ben-Zvi A, Liebner S. Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med. 2022;292(1):31–46. doi:10.1111/joim.13263
  • Gastfriend BD, Nishihara H, Canfield SG, et al. Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. Elife. 2021;10:1.
  • Rodriguez-Tirado C, Kale N, Carlini MJ, et al. NR2F1 is a barrier to dissemination of early-stage breast cancer cells. Cancer Res. 2022;82(12):2313–2326. doi:10.1158/0008-5472.CAN-21-4145
  • Bertacchi M, Romano AL, Loubat A, et al. NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO J. 2020;39(13):e104163. doi:10.15252/embj.2019104163
  • Zhang K, Yu F, Zhu J, et al. Imbalance of excitatory/inhibitory neuron differentiation in neurodevelopmental disorders with an NR2F1 point mutation. Cell Rep. 2020;31(3):107521. doi:10.1016/j.celrep.2020.03.085
  • Deshmukh AL, Caron MC, Mohiuddin M, et al. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: a mechanism of repeat instability. Cell Rep. 2021;37(10):110078. doi:10.1016/j.celrep.2021.110078
  • Pires-daSilva A, Nayernia K, Engel W, et al. Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol. 2001;233(2):319–328. doi:10.1006/dbio.2001.0169
  • Kealy J, Greene C, Campbell M. Blood-brain barrier regulation in psychiatric disorders. Neurosci Lett. 2020;726:133664. doi:10.1016/j.neulet.2018.06.033
  • De Giacomo A, Gargano CD, Simone M, et al. B and T immunoregulation: a new insight of B regulatory lymphocytes in autism spectrum disorder. Front Neurosci. 2021;15:732611. doi:10.3389/fnins.2021.732611
  • Pangrazzi L, Balasco L, Bozzi Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int J Mol Sci. 2020;21(9):3293. doi:10.3390/ijms21093293
  • DiStasio MM, Nagakura I, Nadler MJ, Anderson MP. T lymphocytes and cytotoxic astrocyte blebs correlate across autism brains. Ann Neurol. 2019;86(6):885–898. doi:10.1002/ana.25610