229
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Astroglial Mechanisms Underlying Chronic Insomnia Disorder: A Clinical Study

ORCID Icon, , , , , , , & show all
Pages 693-704 | Published online: 08 Oct 2020

References

  • Wardle-Pinkston S, Slavish DC, Taylor DJ. Insomnia and cognitive performance: A systematic review and meta-analysis. Sleep Med Rev. 2019;48:101205. doi:10.1016/j.smrv.2019.07.008.
  • Winkelman JW. Insomnia Disorder. N Engl J Med. 2015;373(15):1437–1444. doi:10.1056/NEJMcp1412740.
  • Morin CM, Benca R. Chronic insomnia. Lancet. 2012;379:1129–1141. doi:10.1016/S0140-6736(11)60750-2.
  • Blanken TF, Benjamins JS, Borsboom D, et al. Insomnia disorder subtypes derived from life history and traits of affect and personality. Lancet Psychiatry. 2019;6(2):151–163. doi:10.1016/S2215-0366(18)30464-4.
  • Sivertsen B, Overland S, Neckelmann D, et al. The long-term effect of insomnia on work disability: the HUNT-2 historical cohort study. Am J Epidemiol. 2006;163:1018–1024. doi:10.1093/aje/kwj145
  • Sutton EL. Insomnia. Med Clin North Am. 2014;98:565–581. doi:10.1016/j.mcna.2014.01.008.
  • Fortier-Brochu E, Beaulieu-Bonneau S, Ivers H, Morin CM. Insomnia and daytime cognitive performance: a meta-analysis. Sleep Med Rev. 2012;16(1):83–94. doi:10.1016/j.smrv.2011.03.008.
  • Blackwell T, Yaffe K, Ancoli-Israel S, et al. Poor sleep is associated with impaired cognitive function in older women: the study of osteoporotic fractures. J Gerontol a Biol Sci Med Sci. 2006;61(4):405–410. doi:10.1093/gerona/61.4.405
  • Altena E, Vrenken H, Van Der Werf YD, van den Heuvel OA, Van Someren EJ. Reduced orbitofrontal and parietal gray matter in chronic insomnia: a voxel-based morphometric study. Biol Psychiatry. 2010;67(2):182–185. doi:10.1016/j.biopsych.2009.08.003.
  • Stoffers D, Moens S, Benjamins J, et al. Orbitofrontal gray matter relates to early morning awakening: a neural correlate of insomnia complaints? Front Neurol. 2012;3:105. doi:10.3389/fneur.2012.00105.
  • Riemann D, Voderholzer U, Spiegelhalder K, et al. Chronic insomnia and MRI-measured hippocampal volumes: a pilot study. Sleep. 2007;30(8):955–958. doi:10.1093/sleep/30.8.955
  • Jespersen KV, Stevner A, Fernandes H, et al. Reduced structural connectivity in Insomnia Disorder. J Sleep Res. 2019;12:e12901. doi:10.1111/jsr.12901.
  • Zhao L, Wang E, Zhang X, et al. Cortical structural connectivity alterations in primary insomnia: insights from MRI-based morphometric correlation analysis. Biomed Res Int. 2015;2015:817595. doi:10.1155/2015/817595.
  • Spiegelhalder K, Riemann D. Losing sleep. Lancet Neurol. 2015;14(6):571. doi:10.1016/S1474-4422(15)00065-4.
  • Tagliazucchi E, van Someren EJW. The large-scale functional connectivity correlates of consciousness and arousal during the healthy and pathological human sleep cycle. Neuroimage. 2017;160:55–72. doi:10.1016/j.neuroimage.2017.06.026.
  • Kay DB, Buysse DJ. Hyperarousal and beyond: new insights to the pathophysiology of insomnia disorder through functional neuroimaging studies. Brain Sci. 2017;7(3):pii: E23. doi:10.3390/brainsci7030023.
  • Kay DB, Karim HT, Soehner AM, et al. Subjective-objective sleep discrepancy is associated with alterations in regional glucose metabolism in patients with insomnia and good sleeper controls. Sleep. 2017;40:11. doi:10.1093/sleep/zsx155.
  • Hermans LWA, Leufkens TR, van Gilst MM, et al. Sleep EEG characteristics associated with sleep onset misperception. Sleep Med. 2019;57:70–79. doi:10.1016/j.sleep.2019.01.031
  • Haydon PG. Astrocytes and the modulation of sleep. Curr Opin Neurobiol. 2017;44:28–33. doi:10.1016/j.conb.2017.02.008.
  • Garofalo S, Picard K, Limatola C, et al. Role of glia in the regulation of sleep in health and disease. Compr Physiol. 2020;10:2. doi:10.1002/cphy.c190022
  • Zhang P, Tan CW, Chen GH, et al. Patients with chronic insomnia disorder have increased serum levels of neurofilaments, neuron-specific enolase and S100B: does organic brain damage exist? Sleep Med. 2018;48:163–171. doi:10.1016/j.sleep.2017.12.012
  • Di C, Zeng Y, Mao J, Gu W. Dynamic changes and clinical significance of serum S100B protein and glial fibrillary acidic protein in patients with delayed encephalopathy after acute carbon monoxide poisoning. Pak J Med Sci. 2018;34(4):945–949. doi:10.12669/pjms.344.15363
  • Breitling B, Brunkhorst R, Verhoff M, Foerch C. Post-mortem serum concentrations of GFAP correlate with agony time but do not indicate a primary cerebral cause of death. PLoS One. 2018;13(10):e0205323. doi:10.1371/journal.pone.0205323
  • Deuschle M, Schredl M, Wisch C, et al. Serum brain-derived neurotrophic factor (BDNF) in sleep disordered patients: relation to sleep stage N3 and rapid eye movement (REM) sleep across diagnostic entities. J Sleep Res. 2018;27(1):73–77. doi:10.1111/jsr.12577
  • Tang X, Zhou C, Gao J, et al. Serum BDNF and GDNF in Chinese male patients with deficit schizophrenia and their relationships with neurocognitive dysfunction. BMC Psychiatry. 2019;19(1):254. doi:10.1186/s12888-019-2231-3
  • Morin CM, Drake CL, Harvey AG, et al. Insomnia disorder. Nat Rev Dis Primers. 2015;1:15026. doi:10.1038/nrdp.2015.26
  • Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: A systematic review and meta-analysis. Sleep Med Rev. 2016;25:52–73. doi:10.1016/j.smrv.2015.01.009
  • Carpenter JS, Andrykowski MA. Psychometric evaluation of the Pittsburgh Sleep Quality Index. J Psychosom Res. 1998;45(1):5–13. doi:10.1016/s0022-3999(97)00298-5
  • Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62. doi:10.1136/jnnp.23.1.56
  • Chen X, Zhang R, Xiao Y, Dong J, Niu X, Kong W. Reliability and validity of the Beijing version of the Montreal Cognitive Assessment in the evaluation of cognitive function of adult patients with OSAHS. PLoS One. 2015;10:e0132361. doi:10.1371/journal.pone.0132361
  • Zimmerman M, Martin J, Clark HJ, McGonigal P, Harris L, Holst CG. Measuring anxiety in depressed patients: A comparison of the Hamilton anxiety rating scale and the DSM-5 anxious distress specifier interview. Psychiatr Res. 2017;93:59–63. doi:10.1016/j.jpsychires.2017.05.014
  • Hori T, Sugita Y, Koga E, et al. Proposed supplements and amendments to ‘A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects’, the Rechtschaffen & Kales (1968) standard. Psychiatry Clin Neurosci. 2001;55:305–310. doi:10.1046/j.1440-1819.2001.00810.x
  • Abrahams S, Pickering A, Polkey CE, Morris RG. Spatial memory deficits in patients with unilateral damage to the right hippocampal formation. Neuropsychologia. 1997;35:11–24. doi:10.1016/s0028-3932(96)00051-6
  • Porter VR, Buxton WG, Avidan AY. Sleep, cognition and dementia. Curr Psychiatry Rep. 2015;17:97. doi:10.1007/s11920-015-0631-8
  • Chen GH, Xia L, Wang F, et al. Patients with chronic insomnia have selective impairments in memory that are modulated by cortisol. Psychophysiology. 2016;53:1567–1576. doi:10.1111/psyp.12700
  • Tsoporis JN, Marks A, Haddad A, Dawood F, Liu PP, Parker TG. S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation. 2005;111(5):598–606. doi:10.1161/01.CIR.0000154554.65287.F5
  • Carvalho DZ, Schönwald SV, Schumacher-Schuh AF, et al. Overnight S100B in Parkinson’s disease: a glimpse into sleep-related neuroinflammation. Neurosci Lett. 2015;608:57–63. doi:10.1016/j.neulet.2015.10.010
  • Bouvier D, Giguère Y, Pereira B, et al. Cord blood S100B: reference ranges and interest for early identification of newborns with brain injury. Clin Chem Lab Med. 2019. doi:10.1515/cclm-2019-0737
  • Faridaalee G, Keyghobadi Khajeh F. Serum and cerebrospinal fluid levels of S-100β is a biomarker for spinal cord injury; a systematic review and meta-analysis. Arch Acad Emerg Med. 2019;7(1):e19.
  • Morera-Fumero AL, Díaz-Mesa E, Abreu-Gonzalez P, Fernandez-Lopez L, Cejas-Mendez MDR. Day/night changes in serum S100B protein concentrations in acute paranoid schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2017;75:207–212. doi:10.1016/j.pnpbp.2017.02.007
  • Potokar M, Morita M, Wiche G, Jorgačevski J. The diversity of intermediate filaments in astrocytes. Cells. 2020;9(7):E1604. doi:10.3390/cells9071604
  • McMahon PJ, Panczykowski DM, Yue JK, et al. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J Neurotrauma. 2015;32(8):527–533. doi:10.1089/neu.2014.3635
  • Gan ZS, Stein SC, Swanson R, et al. Blood biomarkers for traumatic brain injury: a quantitative assessment of diagnostic and prognostic accuracy. Front Neurol. 2019;10:446. doi:10.3389/fneur.2019.00446
  • Papa L, Lewis LM, Falk JL, et al. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med. 2012;59(6):471–483. doi:10.1016/j.annemergmed.2011.08.021
  • Zagrebelsky M, Tacke C, Korte M. BDNF signaling during the lifetime of dendritic spines [published online ahead of print, 2020 Jun 14]. Cell Tissue Res. 2020;10. doi:10.1007/s00441-020-03226-5.
  • Wei C, Sun Y, Chen N, Chen S, Xiu M, Zhang X. Interaction of oxidative stress and BDNF on executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology. 2019;111:104473. doi:10.1016/j.psyneuen.2019.104473
  • Costa CM, Oliveira GL, Fonseca ACS, Lana RC, Polese JC, Pernambuco AP. Levels of cortisol and neurotrophic factor brain-derived in Parkinson’s disease. Neurosci Lett. 2019;708:134359. doi:10.1016/j.neulet.2019.134359
  • Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci. 2008;28(15):4088–4095. doi:10.1523/JNEUROSCI.5510-07.2008
  • Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2):238–258. doi:10.1124/pr.111.005108
  • Walker M, Xu XM. History of Glial Cell Line-Derived Neurotrophic Factor (GDNF) and its use for spinal cord injury repair. Brain Sci. 2018;8(6):pii: E109. doi:10.3390/brainsci8060109
  • Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors - Relevance for disorders of the central nervous system. Neurobiol Dis. 2017;97(Pt B):80–89. doi:10.1016/j.nbd.2016.01.021
  • Duarte Azevedo M, Sander S, Tenenbaum L. GDNF, A neuron-derived factor upregulated in glial cells during disease. J Clin Med. 2020;9(2):456. doi:10.3390/jcm9020456
  • Ayanlaja AA, Zhang B, Ji G, et al. The reversible effects of glial cell line-derived neurotrophic factor (GDNF) in the human brain. Semin Cancer Biol. 2018;53:212–222. doi:10.1016/j.semcancer.2018.07.005
  • Frank MG. Astroglial regulation of sleep homeostasis. Curr Opin Neurobiol. 2013;23(5):812–818. doi:10.1016/j.conb.2013.02.009
  • Giese M, Unternährer E, Hüttig H, et al. BDNF: an indicator of insomnia? Mol Psychiatry. 2014;19(2):151–152. doi:10.1038/mp.2013.10
  • Mikoteit T, Brand S, Eckert A, Holsboer-Trachsler E, Beck J. Brain-derived neurotrophic factor is a biomarker for subjective insomnia but not objectively assessable poor sleep continuity. J Psychiatr Res. 2019;110:103–109. doi:10.1016/j.jpsychires.2018.12.020
  • He YY, Zhang XY, Yung WH, Zhu JN, Wang JJ. Role of BDNF in central motor structures and motor diseases. Mol Neurobiol. 2013;48(3):783–793. doi:10.1007/s12035-013-8466-y
  • Meis S, Endres T, Lessmann V. Postsynaptic BDNF signalling regulates long-term potentiation at thalamo-amygdala afferents. J Physiol. 2012;590(1):193–208. doi:10.1113/jphysiol.2011.220434
  • Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci. 2000;20(18):7116–7121. doi:10.1523/JNEUROSCI.20-18-07116.2000
  • Fan TT, Chen WH, Shi L, et al. Objective sleep duration is associated with cognitive deficits in primary insomnia: BDNF may play a role. Sleep. 2019;42:1. doi:10.1093/sleep/zsy192
  • Gerlai R, McNamara A, Choi-Lundberg DL, et al. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. Eur J Neurosci. 2001;14(7):1153–1163. doi:10.1046/j.0953-816x.2001.01724.x
  • Naumenko VS, Kondaurova EM, Bazovkina DV, et al. Effect of GDNF on depressive-like behavior, spatial learning and key genes of the brain dopamine system in genetically predisposed to behavioral disorders mouse strains. Behav Brain Res. 2014;274:1–9. doi:10.1016/j.bbr.2014.07.045
  • Nanobashvili A, Airaksinen MS, Kokaia M, et al. Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor alpha 2. Proc Natl Acad Sci U S A. 2000;97:12312–12317. doi:10.1073/pnas.97.22.12312
  • Pertusa M, García-Matas S, Mammeri H, et al. Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiol Aging. 2008;29(9):1366–1379. doi:10.1016/j.neurobiolaging.2007.02.026
  • Deng Q, Terunuma M, Fellin T, Moss SJ, Haydon PG. Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia. 2011;59(7):1084–1093. doi:10.1002/glia.21181
  • Zhang JM, Wang HK, Ye CQ, et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron. 2003;40(5):971–982. doi:10.1016/S0896-6273(03)00717-7
  • Serrano A, Haddjeri N, Lacaille JC, Robitaille R. GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci. 2006;26(20):5370–5382. doi:10.1523/JNEUROSCI.5255-05.2006
  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276(5316):1265–1268. doi:10.1126/science.276.5316.1265
  • Halassa MM, Florian C, Fellin T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron. 2009;61(2):213–219. doi:10.1016/j.neuron.2008.11.024
  • Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci. 2018;75(16):2917–2949. doi:10.1007/s00018-018-2837-5
  • Poskanzer KE, Yuste R. Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci USA. 2016;113(19):E2675E2684. doi:10.1073/pnas.1520759113
  • Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci. 2016;43(10):1298–1306. doi:10.1111/ejn.13074
  • Zhou X, Oishi Y, Cherasse Y, et al. Extracellular adenosine and slow-wave sleep are increased after ablation of nucleus accumbens core astrocytes and neurons in mice. Neurochem Int. 2019;124:256–263. doi:10.1016/j.neuint.2019.01.020
  • Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi:10.1126/science.1241224
  • Murphy-Royal C, Gordon GR, Bains JS. Stress-induced structural and functional modifications of astrocytes-Further implicating glia in the central response to stress. Glia. 2019;67(10):1806–1820. doi:10.1002/glia.23610
  • Duenas Z, Caicedo-Mera JC, Torner L. Global effects of early life stress on neurons and glial cells. Curr Pharm Des. 2018;23(39):6042–6049. doi:10.2174/1381612823666170224111641
  • Pillai V, Roth T, Mullins HM, Drake CL. Moderators and mediators of the relationship between stress and insomnia: stressor chronicity, cognitive intrusion, and coping. Sleep. 2014;37(7):1199–1208. doi:10.5665/sleep.3838
  • Dolsen MR, Crosswell AD, Prather AA. Links between stress, sleep, and inflammation: are there sex differences? Curr Psychiatry Rep. 2019;21(2):8. doi:10.1007/s11920-019-0993-4