135
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Evaluating the Effects of Different Sleep Supplement Modes in Attenuating Metabolic Consequences of Night Shift Work Using Rat Model

, , , , , ORCID Icon & show all
Pages 1053-1065 | Published online: 20 Nov 2020

References

  • Smith L, Folkard S, Tucker P, Macdonald I. Work shift duration: a review comparing eight hour and 12 hour shift systems. Occup Environ Med. 1998;55(4):217–229. doi:10.1136/oem.55.4.217
  • Vetter C, Dashti HS, Lane JM, et al. Night shift work, genetic risk, and type 2 diabetes in the UK Biobank. Diabetes Care. 2018;41(4):762–769. doi:10.2337/dc17-1933
  • Lim YC, Hoe VCW, Darus A, Bhoo-Pathy N. Association between night-shift work, sleep quality and metabolic syndrome. Occup Environ Med. 2018;75(10):716–723.
  • Wilms B, Leineweber EM, Mölle M, et al. Sleep loss disrupts morning-to-evening differences in human white adipose tissue transcriptome. J Clin Endocrinol Metab. 2019;104(5):1687–1696.
  • Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet (London, England). 1999;354(9188):1435–1439. doi:10.1016/S0140-6736(99)01376-8
  • Barf RP, Desprez T, Meerlo P, Scheurink AJ. Increased food intake and changes in metabolic hormones in response to chronic sleep restriction alternated with short periods of sleep allowance. Am J Physiol Regul Integr Comp Physiol. 2012;302(1):R112–117. doi:10.1152/ajpregu.00326.2011
  • Zhan S, Wu Y, Sun P, Lin H, Zhu Y, Han X. Decrease in circulating fatty acids is associated with islet dysfunction in chronically sleep-restricted rats. Int J Mol Sci. 2016;17(12):2102. doi:10.3390/ijms17122102
  • Salgado-Delgado RC, Saderi N, Basualdo Mdel C, Guerrero-Vargas NN, Escobar C, Buijs RM. Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats. PLoS One. 2013;8(4):e60052. doi:10.1371/journal.pone.0060052
  • Rosa Neto JC, Lira FS, Venancio DP, et al. Sleep deprivation affects inflammatory marker expression in adipose tissue. Lipids Health Dis. 2010;9:125. doi:10.1186/1476-511X-9-125
  • Hipolide DC, Suchecki D, Pimentel de Carvalho Pinto A, Chiconelli Faria E, Tufik S, Luz J. Paradoxical sleep deprivation and sleep recovery: effects on the hypothalamic-pituitary-adrenal axis activity, energy balance and body composition of rats. J Neuroendocrinol. 2006;18(4):231–238. doi:10.1111/j.1365-2826.2006.01412.x
  • Machado RB, Suchecki D, Tufik S. Sleep homeostasis in rats assessed by a long-term intermittent paradoxical sleep deprivation protocol. Behav Brain Res. 2005;160(2):356–364. doi:10.1016/j.bbr.2005.01.001
  • Sai P, Rivereau AS, Granier C, Haertle T, Martignat L. Immunization of non-obese diabetic (NOD) mice with glutamic acid decarboxylase-derived peptide 524-543 reduces cyclophosphamide-accelerated diabetes. Clin Exp Immunol. 1996;105(2):330–337. doi:10.1046/j.1365-2249.1996.d01-751.x
  • Hairston IS, Ruby NF, Brooke S, et al. Sleep deprivation elevates plasma corticosterone levels in neonatal rats. Neurosci Lett. 2001;315(1–2):29–32. doi:10.1016/S0304-3940(01)02309-6
  • Barf RP, Van Dijk G, Scheurink AJ, et al. Metabolic consequences of chronic sleep restriction in rats: changes in body weight regulation and energy expenditure. Physiol Behav. 2012;107(3):322–328. doi:10.1016/j.physbeh.2012.09.005
  • Gao B, Kikuchi-Utsumi K, Ohinata H, Hashimoto M, Kuroshima A. Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats. Jpn J Physiol. 2003;53(3):205–213. doi:10.2170/jjphysiol.53.205
  • Moraes DA, Venancio DP, Suchecki D. Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats. Horm Behav. 2014;66(5):705–712. doi:10.1016/j.yhbeh.2014.08.015
  • Jump DB, Tripathy S, Depner CM. Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr. 2013;33:249–269. doi:10.1146/annurev-nutr-071812-161139
  • Kim JY, Yadav D, Ahn SV, et al. A prospective study of total sleep duration and incident metabolic syndrome: the ARIRANG study. Sleep Med. 2015;16(12):1511–1515. doi:10.1016/j.sleep.2015.06.024
  • Venancio DP, Suchecki D. Prolonged REM sleep restriction induces metabolic syndrome-related changes: mediation by pro-inflammatory cytokines. Brain Behav Immun. 2015;47:109–117. doi:10.1016/j.bbi.2014.12.002
  • Everson CA, Szabo A, Blanc S. Repeated exposure to severely limited sleep results in distinctive and persistent physiological imbalances in rats. PLoS One. 2011;6(8):e22987. doi:10.1371/journal.pone.0022987
  • Reinhardt EL, Fernandes P, Markus RP, Fischer FM. Night work effects on salivary cytokines TNF, IL-1beta and IL-6. Chronobiol Int. 2019;36(1):11–26. doi:10.1080/07420528.2018.1515771
  • Killick R, Hoyos CM, Melehan KL, Dungan GC, Poh J, Liu PY. Metabolic and hormonal effects of ‘catch-up’ sleep in men with chronic, repetitive, lifestyle-driven sleep restriction. Clin Endocrinol (Oxf). 2015;83(4):498–507. doi:10.1111/cen.12747
  • Baron KG, Reid KJ. Circadian misalignment and health. Int Rev Psychiatry. 2014;26(2):139–154. doi:10.3109/09540261.2014.911149
  • Gronfier C, Wright KP, Kronauer RE, Czeisler CA. Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci U S A. 2007;104(21):9081–9086. doi:10.1073/pnas.0702835104
  • Wright KP, Bogan RK, Wyatt JK. Shift work and the assessment and management of shift work disorder (SWD). Sleep Med Rev. 2013;17(1):41–54. doi:10.1016/j.smrv.2012.02.002
  • Sack RL, Auckley D, Auger RR, et al. Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep. 2007;30(11):1460–1483. doi:10.1093/sleep/30.11.1460
  • Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418(6901):935–941. doi:10.1038/nature00965
  • Takahashi JS. Circadian clock genes are ticking. Science (New York, NY). 1992;258(5080):238–240. doi:10.1126/science.1384127
  • Tei H, Okamura H, Shigeyoshi Y, et al. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature. 1997;389(6650):512–516. doi:10.1038/39086
  • Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172–15177. doi:10.1073/pnas.0806717105
  • Grimaldi B, Bellet MM, Katada S, et al. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 2010;12(5):509–520. doi:10.1016/j.cmet.2010.10.005
  • Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med. 2004;10(4):355–361. doi:10.1038/nm1025
  • Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74(2):246–260. doi:10.1016/j.neuron.2012.04.006
  • Kumar Jha P, Challet E, Kalsbeek A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol. 2015;418(Pt 1):74–88. doi:10.1016/j.mce.2015.01.024
  • Figueiro MG, Radetsky L, Plitnick B, Rea MS. Glucose tolerance in mice exposed to light-dark stimulus patterns mirroring dayshift and rotating shift schedules. Sci Rep. 2017;7:40661. doi:10.1038/srep40661
  • Gao T, Wang Z, Dong Y, et al. Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J Pineal Res. 2019;67(1):e12574. doi:10.1111/jpi.12574
  • Vinogradova I, Anisimov V. Melatonin prevents the development of the metabolic syndrome in male rats exposed to different light/dark regimens. Biogerontology. 2013;14(4):401–409. doi:10.1007/s10522-013-9437-4
  • Ulhoa MA, Marqueze EC, Burgos LG, Moreno CR. Shift work and endocrine disorders. Int J Endocrinol. 2015;2015:826249.
  • West AC, Smith L, Ray DW, Loudon ASI, Brown TM, Bechtold DA. Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nat Commun. 2017;8(1):417. doi:10.1038/s41467-017-00462-2
  • Chaput JP, Drapeau V, Poirier P, Teasdale N, Tremblay A. Glycemic instability and spontaneous energy intake: association with knowledge-based work. Psychosom Med. 2008;70(7):797–804. doi:10.1097/PSY.0b013e31818426fa
  • Menezes L, de Moraes DA, Ribeiro-Silva N, Silva SMA, Suchecki D, Luz J. Chronic REM sleep restriction in young rats increases energy expenditure with no change in food intake. Exp Physiol. 2020;105(8):1339–1348. doi:10.1113/EP088474