220
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Impaired Coupling of the Brain’s Default Network During Sleep Deprivation: A Resting-State EEG Study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 937-947 | Published online: 10 Nov 2020

References

  • Kahn M, Sheppes G, Sadeh A. Sleep and emotions: bidirectional links and underlying mechanisms. Int J Psychophysiol. 2013;89(2):218–228. doi:10.1016/j.ijpsycho.2013.05.010
  • Ben Simon E, Vallat R, Barnes CM, Walker MP. Sleep loss and the socio-emotional brain. Trends Cogn Sci. 2020;24(6):435–450. doi:10.1016/j.tics.2020.02.003
  • Ferreira C, Deslandes A, Moraes H, et al. The relation between EEG prefrontal asymmetry and subjective feelings of mood following 24 hours of sleep deprivation. Arq Neuropsiquiatr. 2006;64(2B):382–387. doi:10.1590/S0004-282X2006000300006
  • Kamphuis J, Meerlo P, Koolhaas JM, Lancel M. Poor sleep as a potential causal factor in aggression and violence. Sleep Med. 2012;13(4):327–334. doi:10.1016/j.sleep.2011.12.006
  • Minkel J, Banks S, Htaik O, et al. Sleep deprivation and stressors: evidence for elevated negative affect in response to mild stressors when sleep deprived. Emotion. 2012;12(5):1015–1020. doi:10.1037/a0026871
  • Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063–1070. doi:10.1037//0022-3514.54.6.1063
  • Hughes AA, Kendall PC. Psychometric properties of the Positive and Negative Affect Scale for Children (PANAS-C) in children with anxiety disorders. Child Psychiatry Hum Dev. 2009;40(3):343–352. doi:10.1007/s10578-009-0130-4
  • Franzen P, Siegle G, Buysse D. Relationships between affect, vigilance, and sleepiness following sleep deprivation. J Sleep Res. 2008;17(1):34–41. doi:10.1111/j.1365-2869.2008.00635.x
  • Alfarra R, Fins A, Chayo I, Tartar J. Changes in attention to an emotional task after sleep deprivation: neurophysiological and behavioral findings. Biol Psychol. 2014;104:1–7. doi:10.1016/j.biopsycho.2014.11.001
  • Yoo -S-S, Gujar N, Hu P, Jolesz FA, Walker MP. The human emotional brain without sleep - a prefrontal amygdala disconnect. Curr Biol. 2007;17(20):R877–8. doi:10.1016/j.cub.2007.08.007
  • Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65(4):550–562. doi:10.1016/j.neuron.2010.02.005
  • Wang Y, Liu H, Hitchman G, Lei X. Module number of default mode network: inter-subject variability and effects of sleep deprivation. Brain Res. 2015;1596:69–78. doi:10.1016/j.brainres.2014.11.007
  • Gujar N, Yoo -S-S, Hu P, Walker M. The unrested resting brain: sleep deprivation alters activity within the default-mode network. J Cogn Neurosci. 2009;22(8):1637–1648. doi:10.1162/jocn.2009.21331
  • Sämann P, Tully C, Spoormaker V, et al. Increased sleep pressure reduces resting state functional connectivity. MAGMA. 2010;23:375–389. doi:10.1007/s10334-010-0213-z
  • Yang L, Lei Y, Wang L, et al. Abnormal functional connectivity density in sleep-deprived subjects. Brain Imaging Behav. 2018;12(6):1650–1657. doi:10.1007/s11682-018-9829-9
  • Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159. doi:10.1371/journal.pbio.0060159
  • Chase H, Moses-Kolko E, Zevallos C, Wisner K, Phillips M. Disrupted posterior cingulate-amygdala connectivity in postpartum depressed women as measured with resting BOLD fMRI. Soc Cogn Affect Neurosci. 2014;9(8):1065–1075. doi:10.1093/scan/nst083
  • Horne CM, Norbury R. Altered resting-state connectivity within default mode network associated with late chronotype. J Psychiatr Res. 2018;102:223–229. doi:10.1016/j.jpsychires.2018.04.013
  • Tian Y, Chen X, Xu D, Yu J, Lei X. Connectivity within the default mode network mediates the association between chronotype and sleep quality. J Sleep Res. 2020;29(5):e12948. doi:10.1111/jsr.12948
  • Khazaie H, Veronese M, Noori K, et al. Functional reorganization in obstructive sleep apnoea and insomnia: a systematic review of the resting-state fMRI. Neurosci Biobehav Rev. 2017;77:219–231. doi:10.1016/j.neubiorev.2017.03.013
  • Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci. 2011;12(3):154–167. doi:10.1038/nrn2994
  • Vogt BA, Laureys S. Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog Brain Res. 2005;150:205–217. doi:10.1016/s0079-6123(05)50015-3
  • Flores-Ramos M, Alcauter S, López-Titla M, Bernal-Santamaría N, Calva-Coraza E, Edden RAE. Testosterone is related to GABA+ levels in the posterior-cingulate in unmedicated depressed women during reproductive life. J Affect Disord. 2019;242:143–149. doi:10.1016/j.jad.2018.08.033
  • Zhang Q, Wang D, Qin W, et al. Altered resting-state brain activity in obstructive sleep apnea. Sleep. 2013;36(5):651–659. doi:10.5665/sleep.2620
  • Gong J, Chen G, Jia Y, et al. Disrupted functional connectivity within the default mode network and salience network in unmedicated bipolar II disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2019;88:11–18. doi:10.1016/j.pnpbp.2018.06.012
  • Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18(1):49–65. doi:10.1016/0167-8760(84)90014-x
  • Larson-Prior LJ, Power JD, Vincent JL, et al. Modulation of the brain’s functional network architecture in the transition from wake to sleep. Prog Brain Res. 2011;193:277–294. doi:10.1016/B978-0-444-53839-0.00018-1
  • Olbrich S, Mulert C, Karch S, et al. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage. 2009;45:319–332. doi:10.1016/j.neuroimage.2008.11.014
  • Benca RM, Obermeyer WH, Larson CL, et al. EEG alpha power and alpha power asymmetry in sleep and wakefulness. Psychophysiology. 1999;36(4):430–436. doi:10.1111/1469-8986.3640430
  • van Hees VT, Sabia S, Anderson KN, et al. A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS One. 2015;10(11):e0142533. doi:10.1371/journal.pone.0142533
  • Dinges D, Pack F, Williams K, et al. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep. 1997;20(4):267–277. doi:10.1093/sleep/20.4.267
  • Gui D, Xu S, Zhu S, et al. Resting spontaneous activity in the default mode network predicts performance decline during prolonged attention workload. NeuroImage. 2015;120:323–330. doi:10.1016/j.neuroimage.2015.07.030
  • Hoddes E, Dement W, Zarcone V, Phillips R, Dement WC. The development and use of the Stanford Sleepiness Scale (SSS). Psychophysiology. 1972;10:431–436. doi:10.1037/t07116-000
  • Basner M, Dinges DF. Maximizing sensitivity of the psychomotor vigilance test (PVT) to sleep loss. Sleep. 2005;34(5):581–591. doi:10.1093/sleep/34.5.581
  • Berry RB, Brooks R, Gamaldo C, et al. AASM scoring manual updates for 2017 (version 2.4). J Clin Sleep Med. 2017;13(5):665–666. doi:10.5664/jcsm.6576
  • Pascual-Marqui RD, Lehmann D, Koukkou M, et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans a Math Phys Eng Sci. 2011;369(1952):3768–3784. doi:10.1098/rsta.2011.0081
  • Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869. doi:10.1155/2011/156869
  • Lendner JD, Helfrich RF, Mander BA, et al. An electrophysiological marker of arousal level in humans. Elife. 2020;9:e55092. doi:10.7554/eLife.55092
  • Voytek B, Kramer MA, Case J, et al. Age-related changes in 1/f neural electrophysiological noise. J Neurosci. 2015;35(38):13257–13265. doi:10.1523/jneurosci.2332-14.2015
  • Hipp J, Hawellek D, Corbetta M, Siegel M, Engel A. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci. 2012;15(6):884–890. doi:10.1038/nn.3101
  • Hayes AF. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. Guilford Publications; 2017.
  • Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005;25(1):117–129. doi:10.1055/s-2005-867080
  • Charness G, Gneezy U, Kuhn MA. Experimental methods: between-subject and within-subject design. J Econ Behav Organ. 2012;81(1):1–8. doi:10.1016/j.jebo.2011.08.009
  • Kaida K, Takahashi M, Åkerstedt T, et al. Validation of the Karolinska sleepiness scale against performance and EEG variables. Clin Neurophysiol. 2006;117(7):1574–1581. doi:10.1016/j.clinph.2006.03.011
  • Mander BA, Reid KJ, Davuluri VK, et al. Sleep deprivation alters functioning within the neural network underlying the covert orienting of attention. Brain Res. 2008;1217:148–156. doi:10.1016/j.brainres.2008.04.030
  • Siegel J. The neurotransmitters of sleep. J Clin Psychiatry. 2004;65(Suppl 16):4.
  • Lozano-Soldevilla D. On the physiological modulation and potential mechanisms underlying parieto-occipital alpha oscillations. Front Comput Neurosci. 2018;12:23. doi:10.3389/fncom.2018.00023
  • Horovitz SG, Braun AR, Carr WS, et al. Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci U S A. 2009;106(27):11376–11381. doi:10.1073/pnas.0901435106
  • Chow HM, Horovitz SG, Carr WS, et al. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A. 2013;110(25):10300–10305. doi:10.1073/pnas.1217691110
  • Samann PG, Wehrle R, Hoehn D, et al. Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex. 2011;21(9):2082–2093. doi:10.1093/cercor/bhq295
  • Lei X, Zhao Z, Chen H. Extraversion is encoded by scale-free dynamics of default mode network. Neuroimage. 2013;74:52–57. doi:10.1016/j.neuroimage.2013.02.020
  • Kapogiannis D, Reiter DA, Willette AA, Mattson MP. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage. 2013;64:112–119. doi:10.1016/j.neuroimage.2012.09.029
  • Arrubla J, Tse DH, Amkreutz C, Neuner I, Shah NJ, Zang Y-F. GABA concentration in posterior cingulate cortex predicts putamen response during resting state fMRI. PLoS One. 2014;9(9):e106609. doi:10.1371/journal.pone.0106609
  • Philip NS, Sweet LH, Tyrka AR, Price LH, Bloom RF, Carpenter LL. Decreased default network connectivity is associated with early life stress in medication-free healthy adults. Eur Neuropsychopharmacol. 2013;23(1):24–32. doi:10.1016/j.euroneuro.2012.10.008
  • Gong Q, He Y. Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry. 2015;77(3):223–235. doi:10.1016/j.biopsych.2014.08.009