259
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

How Effective is Angiotensin II in Decreasing Mortality of Vasodilatory Shock? A Systematic Review

, , , ORCID Icon, , & show all
Pages 1-11 | Received 25 Sep 2022, Accepted 20 Dec 2022, Published online: 05 Jan 2023

References

  • Vincent JL, De Backer D. Circulatory Shock. N Engl J Med. 2013;369(18):1726–1734. doi:10.1056/NEJMra1208943
  • Brown SM, Lanspa MJ, Jones JP, et al. Survival after shock requiring high-dose vasopressor therapy. Chest. 2013;143(3):664–671. doi:10.1378/chest.12-1106
  • Quan M, Cho N, Bushell T, et al. Effectiveness of angiotensin II for catecholamine refractory septic or distributive shock on mortality: a propensity score weighted analysis of real-world experience in the medical ICU. Crit Care Explor. 2022;4(1):e0623. doi:10.1097/CCE.0000000000000623
  • Health Issues India. The death toll of sepsis in India; 2022. Available from: https://healthissuesindia.com/2018/09/13/the-death-toll-of-sepsis-in-india/. Accessed December 22, 2022.
  • Divatia JV, Amin PR, Ramakrishnan N, et al. Intensive care in India: the Indian intensive care case mix and practice patterns study. Indian J Crit Care Med Peer Rev off Publ Indian Soc Crit Care Med. 2016;20(4):216–225.
  • Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012;10(6):701–706. doi:10.1586/eri.12.50
  • Chawla LS, Russell JA, Bagshaw SM, et al. Angiotensin II for the treatment of high-output shock 3 (ATHOS-3): protocol for a Phase III, double-blind, randomised controlled trial. Crit Care Resusc. 2017;19(1):43–49.
  • Chawla LS, Busse L, Brasha-Mitchell E, et al. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care. 2014;18(5):534. doi:10.1186/s13054-014-0534-9
  • Ortoleva JP, Cobey FC. A systematic approach to the treatment of vasoplegia based on recent advances in pharmacotherapy. J Cardiothorac Vasc Anesth. 2019;33:1310–1314. doi:10.1053/j.jvca.2018.11.025
  • Wells GA, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. Newcastle-Ottawa quality assessment scale. Ottawa Hosp Res Inst. 2014;2014(3):2–4.
  • Sterne JACC, Hernán MA, Reeves BC, et al. Cochrane; ROBINS-I_detailed_guidance. BMJ. 2016;366:1–53.
  • Wieruszewski PM, Wittwer ED, Kashani KB, et al. Angiotensin II infusion for shock: a multicenter study of postmarketing use. Chest. 2021;159(2):596–605. doi:10.1016/j.chest.2020.08.2074
  • Khanna A, English SW, Wang XS, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377(5):419–430. doi:10.1056/NEJMoa1704154
  • Smith SE, Newsome AS, Guo Y, et al. A multicenter observational cohort study of angiotensin II in shock. J Intensive Care Med. 2020;37(1):75–82. doi:10.1177/0885066620972943
  • Khalique SC, Ferguson N. Angiotensin II (Giapreza): a distinct mechanism for the treatment of vasodilatory shock. Cardiol Rev. 2019;27(3):167–169. doi:10.1097/CRD.0000000000000247
  • Corrêa TD, Takala J, Jakob SM. Angiotensin II in septic shock. Crit Care. 2015;19(1):1–6. doi:10.1186/s13054-015-0802-3
  • Patel SN, Ali Q, Samuel P, Steckelings UM, Hussain T. Angiotensin II type 2 receptor and receptor mas are colocalized and functionally interdependent in obese Zucker rat kidney. Hypertens. 2017;70(4):831–838. doi:10.1161/HYPERTENSIONAHA.117.09679
  • Gwathmey TM, Westwood BM, Pirro NT, et al. Nuclear angiotensin-(1–7) receptor is functionally coupled to the formation of nitric oxide. Am J Physiol Renal Physiol. 2010;299(5):F983–90. doi:10.1152/ajprenal.00371.2010
  • Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1–7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertens. 2005;45(5):960–966. doi:10.1161/01.HYP.0000160325.59323.b8
  • Bosnyak S, Widdop RE, Denton KM, Jones ES. Differential mechanisms of ang (1–7)-mediated vasodepressor effect in adult and aged candesartan-treated rats. Int J Hypertens. 2012;2012:192567. doi:10.1155/2012/192567
  • Durand MJ, Raffai G, Weinberg BD, Lombard JH. Angiotensin-(1–7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2010;299(4):H1024–33. doi:10.1152/ajpheart.00328.2010
  • Roks AJM, Nijholt J, van Buiten A, van Gilst WH, de Zeeuw D, Henning RH. Low sodium diet inhibits the local counter-regulator effect of angiotensin-(1–7) on angiotensin II. J Hypertens. 2004;22(12):2355–2361. doi:10.1097/00004872-200412000-00018
  • Senatore F, Balakumar P, Jagadeesh G. Dysregulation of the renin-angiotensin system in septic shock: mechanistic insights and application of angiotensin II in clinical management. Pharmacol Res. 2021;174:1. doi:10.1016/j.phrs.2021.105916
  • Ahmad A, Dempsey SK, Daneva Z, et al. Role of nitric oxide in the cardiovascular and renal systems. Int J Mol Sci. 2018;19(9):2605. doi:10.3390/ijms19092605
  • Lambden S. Bench to bedside review: therapeutic modulation of nitric oxide in sepsis—an update. Intensive Care Med Exp. 2019;7(1). doi:10.1186/s40635-019-0274-x
  • Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol. 2014;171(1):12–23. doi:10.1111/bph.12407
  • Buckley JF, Singer M, Clapp LH. Role of KATP channels in sepsis. Cardiovasc Res. 2006;72(2):220–230. doi:10.1016/j.cardiores.2006.07.011
  • Levy B, Collin S, Sennoun N, et al. Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. Intensive Care Med. 2010;36(12):2019–2029. doi:10.1007/s00134-010-2045-8
  • Martín S, Pérez A, Aldecoa C. Sepsis and immunosenescence in the elderly patient: a review. Front Med. 2017;4:20. doi:10.3389/fmed.2017.00020
  • Juneja D. Severe sepsis and septic shock in the elderly: an overview. World J Crit Care Med. 2012;1(1):23. doi:10.5492/wjccm.v1.i1.23
  • Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis*. Crit Care Med. 2006;34(1):15–21. doi:10.1097/01.CCM.0000194535.82812.BA
  • Rusinova K, Guidet B. Are you sure it’s about “age”? Intensive Care Med. 2014;40(1):114–116. doi:10.1007/s00134-013-3147-x
  • Martin GS. Optimal fluid management in sepsis. Qatar Med J. 2019;2019(2):1.
  • Wray DW, Nishiyama SK, Harris RA, Richardson RS. Angiotensin II in the elderly: impact of angiotensin II type 1 receptor sensitivity on peripheral hemodynamics. Hypertension. 2008;51(6):1611–1616. doi:10.1161/HYPERTENSIONAHA.108.111294
  • Nanba K, Vaidya A, Rainey WE. Aging and Adrenal aldosterone production. Hypertens. 2018;71(2):218–223. doi:10.1161/HYPERTENSIONAHA.117.10391
  • Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021;49(11):e1063–143. doi:10.1097/CCM.0000000000005337
  • Wong A, Alkazemi A, Eche IM, Petri CR, Sarge T, Cocchi MN. A retrospective review of angiotensin II use in adult patients with refractory distributive shock. J Intensive Care Med. 2020;35(12):1490–1496. doi:10.1177/0885066619872720
  • Silva ACS, Lanza K, Palmeira VA, Costa LB, Flynn JT. update on the renin–angiotensin–aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol. 2020;2021(36):1407–1426.
  • Heavner MS, McCurdy MT, Mazzeffi MA, Galvagno SMJ, Tanaka KA, Chow JH. Angiotensin II and vasopressin for vasodilatory shock: a critical appraisal of catecholamine-sparing strategies. J Intensive Care Med. 2021;36(6):635–645. doi:10.1177/0885066620911601
  • Chawla LS, Ostermann M, Forni L, Tidmarsh GF. Broad spectrum vasopressors: a new approach to the initial management of septic shock? Crit Care. 2019;23(1):1–3. doi:10.1186/s13054-019-2420-y
  • Malbrain MLNG, Langer T, Annane D, et al. Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020;10(1). doi:10.1186/s13613-020-00679-3
  • De Backer D, Foulon P. Minimizing catecholamines and optimizing perfusion. Crit Care. 2019;23(Suppl 1):1–7. doi:10.1186/s13054-019-2433-6
  • Guinot PG, Martin A, Berthoud V, et al. Vasopressor-sparing strategies in patients with shock: a scoping-review and an evidence-based strategy proposition. J Clin Med. 2021;10(14):3164. doi:10.3390/jcm10143164
  • Siddique SM, Tipton K, Leas B, et al. Interventions to reduce hospital length of stay in high-risk populations: a systematic review. JAMA Netw Open. 2021;4(9):e2125846. doi:10.1001/jamanetworkopen.2021.25846
  • Baek H, Cho M, Kim S, Hwang H, Song M, Yoo S. Analysis of length of hospital stay using electronic health records: a statistical and data mining approach. PLoS One. 2018;13(4):e0195901. doi:10.1371/journal.pone.0195901
  • Bellomo R, Wunderink RG, Szerlip H, et al. Angiotensin i and angiotensin II concentrations and their ratio in catecholamine-resistant vasodilatory shock. Crit Care. 2020;24(1):1–8. doi:10.1186/s13054-020-2733-x
  • Hannula-Jouppi K, Massinen S, Siljander T, et al. Genetic susceptibility to non-necrotizing erysipelas/cellulitis. PLoS One. 2013;8(2):e56225. doi:10.1371/journal.pone.0056225
  • Dou XM, Cheng HJ, Meng L, et al. Correlations between ACE single nucleotide polymorphisms and prognosis of patients with septic shock. Biosci Rep. 2017;37(2). doi:10.1042/BSR20170145
  • Davenport MW, Zipser RD. Association of hypotension with hyperreninemic hypoaldosteronism in the critically ill patient. Arch Intern Med. 1983;143(4):735–737. doi:10.1001/archinte.1983.00350040125016
  • du Cheyron D, Lesage A, Daubin C, Ramakers M, Charbonneau P. Hyperreninemic hypoaldosteronism: a possible etiological factor of septic shock-induced acute renal failure. Intensive Care Med. 2003;29(10):1703–1709. doi:10.1007/s00134-003-1986-6