436
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

A Review of CAR-T Therapy in Pediatric and Young Adult B-Lineage Acute Leukemia: Clinical Perspectives in Singapore

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 165-176 | Received 17 Sep 2022, Accepted 07 Jan 2023, Published online: 14 Mar 2023

References

  • Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature. 2017;545(7655):423–431. doi:10.1038/nature22395
  • Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35–45. doi:10.1038/nrc971
  • Rosenberg SA, Terry WD. Passive immunotherapy of cancer in animals and man. In Klein G, Weinhouse S editors, Advances in Cancer Research. Vol. 25. Academic Press; 1977:323–388. doi:10.1016/S0065-230X(08)60637-5
  • Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149(3):960–968. doi:10.1016/0006-291x(87)90502-x
  • Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024–10028. doi:10.1073/pnas.86.24.10024
  • Gross G, Eshhar Z. Endowing T cells with antibody specificity using chimeric T cell receptors. FASEB J off Publ Fed Am Soc Exp Biol. 1992;6(15):3370–3378. doi:10.1096/fasebj.6.15.1464371
  • Weiss A, Irving BA, Tan LK, Koretzky GA. Signal transduction by the T cell antigen receptor. Semin Immunol. 1991;3(5):313–324.
  • Sadelain M. Methods for retrovirus-mediated gene transfer into primary T-lymphocytes. In: Robbins PD, editor. Gene Therapy Protocols. Methods in Molecular Medicine. Humana Press; 1997:241–248. doi:10.1385/0-89603-484-4
  • Imai C, Mihara K, Andreansky M, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18(4):676–684. doi:10.1038/sj.leu.2403302
  • Krause A, Guo HF, Latouche JB, Tan C, Cheung NKV, Sadelain M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med. 1998;188(4):619–626. doi:10.1084/jem.188.4.619
  • Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 2019;94(S1):S3–S9. doi:10.1002/ajh.25418
  • Roselli E, Boucher JC, Li G, et al. 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. J Immunother Cancer. 2021;9(10):e003354. doi:10.1136/jitc-2021-003354
  • Roselli E, Faramand R, Davila ML. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. J Clin Invest. 2021;131:2. doi:10.1172/JCI142030
  • Schubert ML, Schmitt A, Neuber B, et al. Third-generation CAR T cells targeting CD19 are associated with an excellent safety profile and might improve persistence of CAR T cells in treated patients. Blood. 2019;134(Supplement_1):51. doi:10.1182/blood-2019-125423
  • Carpenito C, Milone MC, Hassan R, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A. 2009;106(9):3360–3365. doi:10.1073/pnas.0813101106
  • Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–1518. doi:10.1056/NEJMoa1215134
  • Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–733. doi:10.1056/NEJMoa1103849
  • Clinical Cancer Research. FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Available from: https://clincancerres.aacrjournals.org/content/25/4/1142.long. Accessed November 6, 2020.
  • Ali S, Kjeken R, Niederlaender C, et al. The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Oncologist. 2020;25(2):e321–e327. doi:10.1634/theoncologist.2019-0233
  • National childhood cancer registry explorer (NCCR*Explorer). Available from: https://nccrexplorer.ccdi.cancer.gov/. Accessed September 9, 2022.
  • Pui CH, Yang JJ, Bhakta N, Rodriguez-Galindo C. Global efforts toward the cure of childhood acute lymphoblastic leukemia. Lancet Child Adolesc Health. 2018;2(6):440–454. doi:10.1016/S2352-4642(18)30066-X
  • Hodby KA, Marks DI. Recent advances in the management of acute lymphoblastic leukaemia. Curr Treat Options Oncol. 2020;21(3):23. doi:10.1007/s11864-020-0712-8
  • Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30(14):1663–1669. doi:10.1200/JCO.2011.37.8018
  • Gibson A, Trabal A, McCall D, et al. Venetoclax for children and adolescents with acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancers. 2022;14(1). doi:10.3390/cancers14010150
  • Locatelli F, Schrappe M, Bernardo ME, Rutella S. How I treat relapsed childhood acute lymphoblastic leukemia. Blood. 2012;120(14):2807–2816. doi:10.1182/blood-2012-02-265884
  • Marshall GM, Dalla Pozza L, Sutton R, et al. High-risk childhood acute lymphoblastic leukemia in first remission treated with novel intensive chemotherapy and allogeneic transplantation. Leukemia. 2013;27(7):1497–1503. doi:10.1038/leu.2013.44
  • Eckert C, Parker C, Moorman AV, et al. Risk factors and outcomes in children with high-risk B-cell precursor and T-cell relapsed acute lymphoblastic leukaemia: combined analysis of ALLR3 and ALL-REZ BFM 2002 clinical trials. Eur J Cancer. 2021;151:175–189. doi:10.1016/j.ejca.2021.03.034
  • Yeoh AEJ, Ariffin H, Chai ELL, et al. Minimal residual disease–guided treatment deintensification for children with acute lymphoblastic leukemia: results from the Malaysia-Singapore acute lymphoblastic leukemia 2003 study. J Clin Oncol. 2012;30(19):2384–2392. doi:10.1200/JCO.2011.40.5936
  • Gore L, Locatelli F, Zugmaier G, et al. Survival after blinatumomab treatment in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood Cancer J. 2018;8(9):1–7. doi:10.1038/s41408-018-0117-0
  • Campana D, Leung W. Clinical significance of minimal residual disease in patients with acute leukaemia undergoing haematopoietic stem cell transplantation. Br J Haematol. 2013;162(2):147–161. doi:10.1111/bjh.12358
  • Yeoh AEJ, Lu Y, Chin WHN, et al. Intensifying treatment of childhood B-lymphoblastic leukemia with IKZF1 deletion reduces relapse and improves overall survival: results of Malaysia-Singapore all 2010 study. J Clin Oncol. 2018;36(26):2726–2735. doi:10.1200/JCO.2018.78.3050
  • Wann SL Clinical outcomes of Adults and Young Adults (AYA) with Acute Lymphoblastic Leukemia (ALL): a Multicenter Analysis of Pediatric-Inspired Protocol (MASPORE) Vs Hyper-CVAD in Singapore. ASH; 2021. Available from: https://ash.confex.com/ash/2021/webprogram/Paper150615.html. Accessed March 13, 2022.
  • Brivio E, Baruchel A, Beishuizen A, et al. Targeted inhibitors and antibody immunotherapies: novel therapies for paediatric leukaemia and lymphoma. Eur J Cancer. 2022;164:1–17. doi:10.1016/j.ejca.2021.12.029
  • Goto H. Childhood relapsed acute lymphoblastic leukemia: biology and recent treatment progress. Pediatr Int. 2015;57(6):1059–1066. doi:10.1111/ped.12837
  • Pui CH, Cheng C, Leung W, et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med. 2003;349(7):640–649. doi:10.1056/NEJMoa035091
  • Pui CH, Jeha S. Clofarabine. Nat Rev Drug Discov. 2005;4:S12–S13. doi:10.1038/nrd1724
  • Cohen MH, Johnson JR, Justice R, Pazdur R. FDA drug approval summary: nelarabine (Arranon) for the treatment of T-cell lymphoblastic leukemia/lymphoma. Oncologist. 2008;13(6):709–714. doi:10.1634/theoncologist.2006-0017
  • Salzer WL, Burke MJ, Devidas M, et al. Toxicity associated with intensive postinduction therapy incorporating clofarabine in the very high-risk stratum of patients with newly diagnosed high-risk B-lymphoblastic leukemia: a report from the Children’s Oncology Group study AALL1131. Cancer. 2018;124(6):1150–1159. doi:10.1002/cncr.31099
  • von Stackelberg A, Locatelli F, Zugmaier G, et al. Phase I/Phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol off J Am Soc Clin Oncol. 2016;34(36):4381–4389. doi:10.1200/JCO.2016.67.3301
  • O’Brien MM, Ji L, Shah NN, et al. Phase II trial of inotuzumab ozogamicin in children and adolescents with relapsed or refractory B-cell acute lymphoblastic leukemia: children’s oncology group protocol AALL1621. J Clin Oncol. 2022;40(9):956–967. doi:10.1200/JCO.21.01693
  • Brown PA, Ji L, Xu X, et al. Effect of postreinduction therapy consolidation with blinatumomab vs chemotherapy on disease-free survival in children, adolescents, and young adults with first relapse of B-cell acute lymphoblastic leukemia: a randomized clinical trial. JAMA. 2021;325(9):833–842. doi:10.1001/jama.2021.0669
  • Brown PA, Ji L, Xu X, et al. A randomized phase 3 trial of blinatumomab vs. chemotherapy as post-reinduction therapy in high and intermediate risk (HR/IR) first relapse of B-acute lymphoblastic leukemia (B-ALL) in children and adolescents/young adults (AYAs) demonstrates superior efficacy and tolerability of blinatumomab: a report from children’s oncology group study AALL1331. Blood. 2019;134(Supplement_2):LBA–1. doi:10.1182/blood-2019-132435
  • Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–753. doi:10.1056/NEJMoa1509277
  • Maude SL, Teachey DT, Rheingold SR, et al. Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. J Clin Oncol. 2016;34(15_suppl):3011. doi:10.1200/JCO.2016.34.15_suppl.3011
  • Pasquini MC, Hu ZH, Curran K, et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020;4(21):5414–5424. doi:10.1182/bloodadvances.2020003092
  • Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–1517. doi:10.1056/NEJMoa1407222
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi:10.1056/NEJMoa1709866
  • Holland EM, Molina JC, Dede K, et al. Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation. J Immunother Cancer. 2022;10(5):e004483. doi:10.1136/jitc-2021-004483
  • Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–590. doi:10.1038/nm.3838
  • Maschan M, Caimi PF, Reese-Koc J, et al. Multiple site place-of-care manufactured anti-CD19 CAR-T cells induce high remission rates in B-cell malignancy patients. Nat Commun. 2021;12(1):7200. doi:10.1038/s41467-021-27312-6
  • Castella M, Caballero-Baños M, Ortiz-Maldonado V, et al. Point-of-care CAR T-cell production (ARI-0001) using a closed semi-automatic bioreactor: experience from an academic phase I clinical trial. Front Immunol. 2020;11:482.
  • Ruella M, Locke FL. Beat pediatric ALL MRD: CD28 CAR T and transplant. Blood. 2019;134(26):2333–2335. doi:10.1182/blood.2019003821
  • Lee DW, Wayne AS, Huynh V, et al. ZUMA-4 preliminary results: phase 1 study of KTE-C19 chimeric antigen receptor T cell therapy in pediatric and adolescent patients (pts) with relapsed/refractory acute lymphoblastic leukemia (R/R ALL). Ann Oncol. 2017;28:v360–v361. doi:10.1093/annonc/mdx373.014
  • Curran KJ, Margossian SP, Kernan NA, et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. 2019;134(26):2361–2368. doi:10.1182/blood.2019001641
  • Shah NN, Lee DW, Yates B, et al. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J Clin Oncol off J Am Soc Clin Oncol. 2021;39(15):1650–1659. doi:10.1200/JCO.20.02262
  • Jacoby E, Ghorashian S, Vormoor B, et al. CD19 CAR T-cells for pediatric relapsed acute lymphoblastic leukemia with active CNS involvement: a retrospective international study. Leukemia. 2022;36(6):1525–1532. doi:10.1038/s41375-022-01546-9
  • Lamble A, Myers RM, Taraseviciute A, et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 2022:2022007423. doi:10.1182/bloodadvances.2022007423
  • Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. doi:10.3324/haematol.2019.229781
  • Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15(1):47–62. doi:10.1038/nrclinonc.2017.148
  • Mahadeo KM, Khazal SJ, Abdel-Azim H, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol. 2019;16(1):45–63. doi:10.1038/s41571-018-0075-2
  • Thielen FW, van Dongen-Leunis A, Arons AMM, Ladestein JR, Hoogerbrugge PM. Cost-effectiveness of Anti-CD19 chimeric antigen receptor T-Cell therapy in pediatric relapsed/refractory B-cell acute lymphoblastic leukemia. A societal view. Eur J Haematol. 2020;105(2):203–215. doi:10.1111/ejh.13427
  • Spiegel JY, Patel S, Muffly L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27(8):1419–1431. doi:10.1038/s41591-021-01436-0
  • Cordoba S, Onuoha S, Thomas S, et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021;27(10):1797–1805. doi:10.1038/s41591-021-01497-1
  • Ma S, Li X, Wang X, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–2560. doi:10.7150/ijbs.34213
  • DeRenzo C, Krenciute G, Gottschalk S. The landscape of CAR T cells beyond acute lymphoblastic leukemia for pediatric solid tumors. Am Soc Clin Oncol Educ Book. 2018. doi:10.1200/EDBK_200773
  • Gupta A, Cripe TP. Immunotherapies for pediatric solid tumors: a targeted update. Paediatr Drugs. 2022;24(1):1–12. doi:10.1007/s40272-021-00482-y
  • Armstrong GT, Liu Q, Yasui Y, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study. J Clin Oncol off J Am Soc Clin Oncol. 2009;27(14):2328–2338. doi:10.1200/JCO.2008.21.1425
  • Wang XJ, Wang YH, Ong MJC, Gkitzia C, Soh SY, Hwang WYK. Cost-effectiveness and budget impact analyses of tisagenlecleucel in pediatric and young adult patients with relapsed or refractory B-cell acute lymphoblastic leukemia from the Singapore healthcare system perspective. Clin Outcomes Res. 2022;14:333–355. doi:10.2147/CEOR.S355557
  • Tan AT, Yang N, Lee Krishnamoorthy T, et al. Use of expression profiles of HBV-DNA integrated into genomes of hepatocellular carcinoma cells to select T cells for immunotherapy. Gastroenterology. 2019;156(6):1862–1876.e9. doi:10.1053/j.gastro.2019.01.251
  • Ko RH, Ji L, Barnette P, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol off J Am Soc Clin Oncol. 2010;28(4):648–654. doi:10.1200/JCO.2009.22.2950
  • Parker C, Waters R, Leighton C, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet. 2010;376(9757):2009–2017. doi:10.1016/S0140-6736(10)62002-8