455
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Post-Hematopoietic Cell Transplantation Relapsed Acute Lymphoblastic Leukemia: Current Challenges and Future Directions

, , , , &
Pages 1-16 | Received 26 Jun 2022, Accepted 14 Dec 2022, Published online: 14 Jan 2023

References

  • Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577. doi:10.1038/bcj.2017.53
  • Aldoss I, Forman SJ, Pullarkat V. Acute lymphoblastic leukemia in the older adult. J Oncol Pract. 2019;15(2):67–75. doi:10.1200/JOP.18.00271
  • Bourlon C, Lacayo-Leñero D, Inclán-Alarcón SI, Demichelis-Gómez R. Hematopoietic Stem cell transplantation for adult Philadelphia-negative acute lymphoblastic leukemia in the first complete remission in the era of minimal residual disease. Curr Oncol Rep. 2018;20(4):36. doi:10.1007/s11912-018-0679-9
  • Center of International Blood and Marrow Transplant Research Database. COVID-19 Updates from CIBMTR. Available from: https://www.cibmtr.org/Pages/index.aspx. Accessed December 16, 2022.
  • Arslan S, Pullarkat V, Aldoss I. Indications for allogeneic HCT in adults with acute lymphoblastic leukemia in first complete remission. Curr Treat Options Oncol. 2021;22(7):63. doi:10.1007/s11864-021-00860-1
  • Greil C, Engelhardt M, Ihorst G. Prognostic factors for survival after allogeneic transplantation in acute lymphoblastic leukemia. Bone Marrow Transplant. 2021;56(4):841–852. doi:10.1038/s41409-020-01101-z
  • Spyridonidis A. How I treat measurable (minimal) residual disease in acute leukemia after allogeneic hematopoietic cell transplantation. Blood. 2020;135(19):1639–1649. doi:10.1182/blood.2019003566
  • Michael A, Pulsipher BLF. The addition of sirolimus to tacrolimus/methotrexate GVHD prophylaxis in children with ALL: a phase 3 children’s oncology group/pediatric blood and marrow transplant consortium trial. Blood. 2014;123(13):2017–2025. doi:10.1182/blood-2013-10-534297
  • Pulsipher MA. Risk factors and timing of relapse after allogeneic transplantation in pediatric ALL: for whom and when should interventions be tested? Bone Marrow Transplant. 2015;50(9):1173–1179. PMID: 25961775; PMCID: PMC4573663. doi:10.1038/bmt.2015.103
  • Michael A, Pulsipher CSF. Striking predictive power for relapse and decreased survival associated with detectable minimal residual disease by IGH VDJ deep sequencing of bone marrow pre- and post-allogeneic transplant in children with B-lineage all: a subanalysis of the COG ASCT043. Blood. 2013;919. doi:10.1182/blood.V122.21.919.919
  • Wethmar K, Matern S, Eßeling E. Monitoring minimal residual/relapsing disease after allogeneic haematopoietic stem cell transplantation in adult patients with acute lymphoblastic leukaemia. Bone Marrow Transplant. 2020;55(7):1410–1420. doi:10.1038/s41409-020-0801-0
  • National Comprehensive Cancer Network. Acute lymphoblastic leukemia (version4.2021); 2021.
  • Bader P, Kreyenberg H, von Stackelberg A, et al. Monitoring of minimal residual disease after allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia allows for the identification of impending relapse: results of the ALL-BFM-SCT 2003 trial. J Clin Oncol. 2015;33:1275–1284. doi:10.1200/JCO.2014.58.4631
  • Balduzzi A, Di Maio L, Silvestri D, et al. Minimal residual disease before and after transplantation for childhood acute lymphoblastic leukaemia: is there any room for intervention? Br J Haematol. 2014;164:396–408. doi:10.1111/bjh.12639
  • Merli P, Ifversen M, Truong TH. Minimal residual disease prior to and after haematopoietic stem cell transplantation in children and adolescents with acute lymphoblastic leukaemia: what level of negativity is relevant? Front Pediatr. 2021;9:777108. doi:10.3389/fped.2021.777108
  • Terwey TH, Hemmati PG, Nagy M. Comparison of chimerism and minimal residual disease monitoring for relapse prediction after allogeneic stem cell transplantation for adult acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2014;20(10):1522–1529. doi:10.1016/j.bbmt.2014.05.026
  • Phelan R, Arora M, Chen M. Current use and outcome of hematopoietic stem cell transplantation: CIBMTR US summary slides; 2020.
  • Riviello-Goya S, Acosta-Medina AA, Inclan-Alarcon SI, Garcia-Miranda S, Bourlon C. Isolated extramedullary relapse in acute lymphoblastic leukemia: what can we do before and after transplant? Oncology. 2020;34(2):39–43.
  • Yuda S, Fuji S, Onishi A. Extramedullary relapse of acute myelogenous leukemia after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(6):1152–1157. doi:10.1016/j.bbmt.2019.01.011
  • Shem-Tov N, Saraceni F, Danylesko I. Isolated extramedullary relapse of acute leukemia after allogeneic stem cell transplantation: different kinetics and better prognosis than systemic relapse. Biol Blood Marrow Transplant. 2017;23(7):1087–1094. doi:10.1016/j.bbmt.2017.03.023
  • Hamdi A, Mawad R, Bassett R. Central nervous system relapse in adults with acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(11):1767–1771. doi:10.1016/j.bbmt.2014.07.005
  • Larson RA. Managing CNS disease in adults with acute lymphoblastic leukemia. Leuk Lymphoma. 2018;59(1):3–13. doi:10.1080/10428194.2017.1326597
  • O’Brien S, Schiller G, Lister J. High-dose vincristine sulfate liposome injection for advanced, relapsed, and refractory adult Philadelphia chromosome-negative acute lymphoblastic leukemia. J Clin Oncol. 2013;31(6):676–683. doi:10.1200/JCO.2012.46.2309
  • Kantarjian H, Gandhi V, Cortes J. Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood. 2003;102(7):2379–2386. doi:10.1182/blood-2003-03-0925
  • Topp MS, Gökbuget N, Stein AS. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi:10.1016/S1470-2045(14)71170-2
  • Stein AS, Kantarjian H, Gökbuget N. Blinatumomab for acute lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(8):1498–1504. doi:10.1016/j.bbmt.2019.04.010
  • Kantarjian H, Stein A, Gökbuget N. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–847. doi:10.1056/NEJMoa1609783
  • Martinelli G, Boissel N, Chevallier P. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive b-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35(16):1795–1802. doi:10.1200/JCO.2016.69.3531
  • Mahmoud R, Banerjee P, Milton DR. Blinatumomab maintenance after allogeneic hematopoietic cell transplantation for B-lineage acute lymphoblastic leukemia. Blood. 2022;139(12):1908–1919. doi:10.1182/blood.2021013290
  • Kebriaei P, Banerjee PP, Ganesh C, et al. Blinatumomab is well tolerated maintenance therapy following allogeneic hematopoietic cell transplantation for acute lymphoblastic leukemia. Blood. 2019;134(Supplement_1):1298. doi:10.1182/blood-2019-125931
  • Gökbuget N, Dombret H, Bonifacio M. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–1531. doi:10.1182/blood-2017-08-798322
  • Kantarjian H, Thomas D, Jorgensen J. Inotuzumab ozogamicin, an anti-CD22–calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–411. doi:10.1016/S1470-2045(11)70386-2
  • Kantarjian HM. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–753. doi:10.1056/NEJMoa1509277
  • Metheny L. Post-transplant inotuzumab ozogamicin for acute lymphoblastic leukemia. Blood. 2021;138(Supplement 1):2899. doi:10.1182/blood-2021-153041
  • Sasaki K. Sequential combination of low-intensity chemotherapy (mini-hyper-CVD) plus inotuzumab ozogamicin with or without blinatumomab in patients with relapsed/refractory Philadelphia chromosome negative acute lymphoblastic leukemia (ALL): a phase 2 trial. Blood. 2018;132(Supplement 1):553.
  • Jabbour E. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini–hyper-CVD for patients with relapsed or refractory Philadelphia chromosome–negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncol. 2018;4(2):230–234. doi:10.1001/jamaoncol.2017.2380
  • Sasaki K. Sequential combination of Inotuzumab Ozogamicin (InO) with low-intensity chemotherapy (mini-hyper-CVD) with or without blinatumomab is highly effective in patients (pts) with Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL) in First Relapse. Blood. 2019;134(Supplement_1):3806.
  • Sasaki K. Long-term follow-up of the combination of low-intensity chemotherapy plus inotuzumab ozogamicin with or without blinatumomab in patients with relapsed-refractory Philadelphia chromosome-negative acute lymphoblastic leukemia: a phase 2 trial. Blood. 2020;136(Supplement 1):40–42.
  • Ej. W. T cell exhaustion. Nat Immunol. 2011;12(6):492–499. PMID: 21739672. doi:10.1038/ni.2035
  • Deol A. Role of donor lymphocyte infusions in relapsed hematological malignancies after stem cell transplantation revisited. Cancer Treat Rev. 2010;36(7):528. doi:10.1016/j.ctrv.2010.03.004
  • Bader P. Quantitative assessment of mixed hematopoietic chimerism by polymerase chain reaction after allogeneic BMT. Anticancer Res. 1996;16(4A):1759–1763.
  • Ramírez M, Díaz MA, García-Sánchez F. Chimerism after allogeneic hematopoietic cell transplantation in childhood acute lymphoblastic leukemia. Bone Marrow Transplant. 1996;18(6):1161–1165.
  • McSweeney PA. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood. 2001;97(11):3390–3400. doi:10.1182/blood.V97.11.3390
  • Georges GE, Storb R, Thompson JD. Adoptive immunotherapy in canine mixed chimeras after nonmyeloablative hematopoietic cell transplantation. Blood. 2000;95(10):3262–3269. doi:10.1182/blood.V95.10.3262
  • Spitze Tr. Nonmyeloablative allogeneic stem cell transplant strategies and the role of mixed chimerism. Oncologist. 2000;5:215–223. doi:10.1634/theoncologist.5-3-215
  • Bader P. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J Clin Oncol. 2004;22(9):1696–1705. doi:10.1200/JCO.2004.05.198
  • Alida Dominietto GP, Piaggio G, Pozzi S. Treatment of Minimal Residual Disease (MRD) with Donor Lymphocyte Infusions (DLI) in acute leukemia patients undergoing an allogeneic Hemopoietic Stem Cell Transplants (HSCT). Blood. 2005;106(11):2012. doi:10.1182/blood.V106.11.2012.2012
  • Yan C-H, Liu Q-F, Wu D-P. Prophylactic Donor Lymphocyte Infusion (DLI) followed by minimal residual disease and graft-versus-host disease–guided multiple DLIs could improve outcomes after allogeneic hematopoietic stem cell transplantation in patients with refractory/relapsed acute. Biol Blood Marrow Transplant. 2017;23(8):1311–1319. doi:10.1016/j.bbmt.2017.04.028
  • Kolb HJ, Schattenberg A, Goldman JM. European group for blood and marrow transplantation working party chronic leukemia. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86(5):2041–2050. doi:10.1182/blood.V86.5.2041.bloodjournal8652041
  • Kolb HJ, Schmid C, Barrett AJ, Schendel DJ. Graft-versus-leukemia reactions in allogeneic chimeras. Blood. 2004;103(3):767–776. doi:10.1182/blood-2003-02-0342
  • Loren AW, Porter DL. Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant. 2008;41(5):483–493. doi:10.1038/sj.bmt.1705898
  • Choi SJ, Lee J-H, Lee J-H. Treatment of relapsed acute lymphoblastic leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a prospective study. Bone Marrow Transplant. 2005;36(2):163–169. doi:10.1038/sj.bmt.1705024
  • Cardoso AA, Schultze JL, Boussiotis VA. Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Blood. 1996;88(1):41–48. doi:10.1182/blood.V88.1.41.41
  • Galandrini R, Albi N, Zarcone D, Grossi CE, Velardi A. Adhesion molecule-mediated signals regulate major histocompatibility complex-unrestricted and CD3/T cell receptor-triggered cytotoxicity. Eur J Immunol. 1992;22:2047–2053. doi:10.1002/eji.1830220814
  • Han P, Story C, McDonald T, Mrozik K, Snell L. Immune escape mechanisms of childhood ALL and a potential countering role for DC-like leukemia cells. Cytotherapy. 2002;4:165–175. doi:10.1080/146532402317381875
  • Ruggeri L, Capanni M, Urbani E. Effectiveness of donor natural killer alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–2100. doi:10.1126/science.1068440
  • Porter DL, Levine BL, Bunin N. A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood. 2006;107(4):1325–1331. doi:10.1182/blood-2005-08-3373
  • Durer C, Durer S, Shafqat M, et al. Concomitant use of blinatumomab and donor lymphocyte infusion for post-transplant relapsed CD19 positive acute lymphoblastic leukemia: systematic review. Blood. 2018;132(Supplement 1):5742. doi:10.1182/blood-2018-99-109998
  • Papayannidis C, Sartor C, Dominietto A, et al. Inotuzumab ozogamicin and donor lymphocyte infusion is a safe and promising combination in relapsed acute lymphoblastic leukemia after allogeneic stem cell transplant. Hematol Oncol. 2021;39(4):580–583. PMID: 33963566. doi:10.1002/hon.2886
  • Lubbert M. Efficacy of a 3-day, low-dose treatment with 5-azacytidine followed by donor lymphocyte infusions in older patients with acute myeloid leukemia or chronic myelomonocytic leukemia relapsed after allografting. Bone Marrow Transplant. 2010;45:627–632. doi:10.1038/bmt.2009.222
  • Schroeder T, Czibere A, Platzbecker U. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013;27:1229–1235. doi:10.1038/leu.2013.7
  • Levine JE. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol. 2002;20(2):405–412. doi:10.1200/JCO.2002.20.2.405
  • Guillaume T, Gaugler B, Chevallier P. Escalated lymphodepletion followed by donor lymphocyte infusion can induce a graft-versus-host response without overwhelming toxicity. Bone Marrow Transplant. 2012;47(8):1112–1117. doi:10.1038/bmt.2011.231
  • Chang XZ, Zang X, Xia C-Q. New strategies of DLI in the management of relapse of hematological malignancies after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2015;51:324–332. doi:10.1038/bmt.2015.288
  • Porter DL, Collins RH, Hardy C. Treatment of relapsed leukemia after unrelated donor marrow transplantation with unrelated donor leukocyte infusions. Blood. 2000;95(4):1214–1221.
  • Innes AJ. Escalating-dose HLA-mismatched DLI is safe for the treatment of leukaemia relapse following alemtuzumab-based myeloablative allo-SCT. Bone Marrow Transplant. 2013;48(10):1324–1328. doi:10.1038/bmt.2013.69
  • Lewalle P. Donor lymphocyte infusions in adult haploidentical transplant: a dose finding study. Bone Marrow Transplant. 2003;31(1):39–44. doi:10.1038/sj.bmt.1703779
  • Bar M, Sandmaier BM, Inamoto Y. Donor lymphocyte infusion for relapsed hematological malignancies after allogeneic hematopoietic cell transplantation: prognostic relevance of the initial CD3+ T cell dose. Biol Blood Marrow Transplant. 2013;19(6):949–957. doi:10.1016/j.bbmt.2013.03.001
  • Rezvani K, Yong ASM, Savani BN. Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes after allogeneic stem-cell transplantation for acute lymphoblastic leukemia. Blood. 2007;110(6):1924–1932. doi:10.1182/blood-2007-03-076844
  • Nagler A, Labopin M, Dholaria B. second allogeneic stem cell transplantation in patients with acute lymphoblastic leukaemia: a study on behalf of the acute leukaemia working party of the European society for blood and marrow transplantation. Br J Haematol. 2019;186(5):767–776. doi:10.1111/bjh.15973
  • Eapen M. Second transplant for acute and chronic leukemia relapsing after first HLA-identical sibling transplant. Bone Marrow Transplant. 2004;34(8):721–727. doi:10.1038/sj.bmt.1704645
  • Kishi K. Second allogeneic bone marrow transplantation for post-transplant leukemia relapse: results of a survey of 66 cases in 24 Japanese institutes. Bone Marrow Transplantation. 1997;19(5):721–727. doi:10.1038/sj.bmt.1700680
  • Poon L. Outcomes of second allogeneic hematopoietic stem cell transplantation for patients with acute lymphoblastic leukemia. Bone Marrow Transplant. 2013;48:666–670.
  • Michallet M. Second allogeneic haematopoietic stem cell transplantation in relapsed acute and chronic leukaemias for patients who underwent a first allogeneic bone marrow transplantation: a survey of the société française de greffe de moelle. Br J Haematol. 2000;108(2):400–407.
  • Al-Shaibani E. Comparison of outcomes after second allogeneic hematopoietic cell transplantation versus donor lymphocyte infusion in allogeneic hematopoietic cell transplant patients. Clin Lymphoma Myeloma Leuk. 2021;11:1.
  • Yalniz FF. Outcomes of second allogeneic hematopoietic cell transplantation for patients with acute myeloid leukemia. Transplant Cell Ther. 2021;27(8):689–695. doi:10.1016/j.jtct.2021.05.007
  • Shimoni A. Donor selection for a second allogeneic stem cell transplantation in AML patients relapsing after a first transplant: a study of the acute leukemia working party of EBMT. Blood Cancer J. 2019;9(12):88. doi:10.1038/s41408-019-0251-3
  • Maude SF. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Eng J Med. 2014;371(16):1507–1517.
  • Shah BG. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet. 2021;398(10299):491–502.
  • Maude SL. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Eng J Med. 2018;378(5):439–448.
  • Rives S. S112: tisagenlecleucel in pediatric and young adult patients (Pts) with relapsed /refractory (R/R) B –cell Acute Lymphoblastic Leukemia (B-ALL): final analysis from the ELIANA study. Hema Sphere. 2022;6:13–14.
  • Pasquini MC. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020;4(21):5414–5424. doi:10.1182/bloodadvances.2020003092
  • Anagnostou T. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis. Lancet Haematol. 2020;7(11):e816–e826. PMID:33091355. doi:10.1016/S2352-3026(20)30277-5
  • Myers RM. Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J Clin Oncol. 2022;40(9):932–944. PMID: 34767461; PMCID: PMC8937010. doi:10.1200/JCO.21.01405
  • Pillai V. CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Adv. 2019;3(22):3539–3549.
  • Jiang H. Anti-CD19 chimeric antigen receptor-modified T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia: an open-label pragmatic clinical trial. Am J Hematol. 2019;94(10):1113–1122.
  • Gardner RA. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–3333.
  • Myers RM. Humanized CD19-targeted Chimeric Antigen Receptor (CAR) T cells in CAR-naive and CAR-exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia. J Clin Oncol. 2021;39(27):3044–3055.
  • Shah NN. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. J Clin Oncol. 2021;39(15):1650–1659.
  • Frey NV. Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia. J Clin Oncol. 2020;38(5):415–422.
  • Hay KA. Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy. Blood. 2019;133(15):1652–1663.
  • Park JH. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–459.
  • Wang N. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood. 2020;135(1):17–27.
  • Youle RJ. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1):47–59.
  • Alford SE, Chambers TC. BH3 inhibitor sensitivity and Bcl-2 dependence in primary acute lymphoblastic leukemia cells. Cancer Res. 2015;75(7):1366–1375.
  • Frismantas V. Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood. 2017;129(11):e26–e37.
  • Pullarkat VA. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021;11(6):1440–1453. PMID: 33593877. doi:10.1158/2159-8290.CD-20-1465
  • Park SH. Increased expression of immune checkpoint programmed cell death protein-1 (PD-1) on T cell subsets of bone marrow aspirates in patients with B-Lymphoblastic leukemia, especially in relapse and at diagnosis. Cytometry B Clin Cytom. 2020;98(4):336–347.
  • Feucht J. T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget. 2016;7(47):76902–76919.
  • Wunderlich M, Manning N, Sexton C. PD-1 inhibition enhances blinatumomab response in a UCB/PDX model of relapsed pediatric B-cell acute lymphoblastic leukemia. Front Oncol. 2021;11:642466. doi:10.3389/fonc.2021.642466
  • Webster J, Luskin MR, Prince GT. Blinatumomab in combination with immune checkpoint inhibitors of PD-1 and CTLA-4 in adult patient swith relapsed/refractory (R/R) CD19 positive B-cell Acute Lymphoblastic Leukemia (ALL): preliminary results of a phase I study. Blood. 2018;29:557. doi:10.1182/blood-2018-99-111845
  • Ijaz A, Khan AY, Malik SU. Significant risk of graft-versus-host disease with exposure to checkpoint inhibitors before and after allogeneic transplantation. Biol Blood Marrow Transplant. 2019;25(1):94–99. PMID: 30195074; PMCID: PMC6310648. doi:10.1016/j.bbmt.2018.08.028
  • Blaeschke F, Stenger D, Apfelbeck A. Augmenting anti-CD19 and anti-CD22 CAR T-cell function using PD-1-CD28 checkpoint fusion proteins. Blood Cancer J. 2021;11(6):108. doi:10.1038/s41408-021-00499-z
  • Li S, Siriwon N, Zhang X. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res. 2017;23(22):6982–6992. doi:10.1158/1078-0432.CCR-17-0867
  • Rafiq S, Yeku OO, Jackson HJ. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 2018;36(9):847–856. doi:10.1038/nbt.4195
  • Rupp LJ, Schumann K, Roybal KT. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017;7(1):737. doi:10.1038/s41598-017-00462-8
  • Krivtsov AV, Evans K, Gadrey JY. A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell. 2019;36(6):660–673.e611. doi:10.1016/j.ccell.2019.11.001
  • Borkin D, He S, Miao H. Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell. 2015;27(4):589–602. doi:10.1016/j.ccell.2015.02.016
  • Naik J, Themeli M, de Jong-Korlaar R. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica. 2019;104(3):e100–e103. doi:10.3324/haematol.2018.192757
  • Tembhare PR. Flow cytometric evaluation of CD38 expression levels in the newly diagnosed T-cell acute lymphoblastic leukemia and the effect of chemotherapy on its expression in measurable residual disease, refractory disease and relapsed disease: an implication for anti-CD38 immunotherapy. J Immunother Cancer. 2020;8(1):1.
  • Bras AE, Beishuizen A, Langerak AW. CD38 expression in paediatric leukaemia and lymphoma: implications for antibody targeted therapy. Br J Haematol. 2018;180(2):292–296. doi:10.1111/bjh.14310
  • Bride KL, Vincent TL, Im S-Y. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood. 2018;131(9):995–999. doi:10.1182/blood-2017-07-794214
  • Vogiatzi F, Winterberg D, Lenk L. Daratumumab eradicates minimal residual disease in a preclinical model of pediatric T-cell acute lymphoblastic leukemia. Blood. 2019;134(8):713–716. doi:10.1182/blood.2019000904
  • Ofran Y, Ringelstein-Harlev S, Slouzkey I. Daratumumab for eradication of minimal residual disease in high-risk advanced relapse of T-cell/CD19/CD22-negative acute lymphoblastic leukemia. Leukemia. 2020;34(1):293–295. doi:10.1038/s41375-019-0548-z
  • Diorio C, Murray R, Naniong M, et al. Teachey; Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood. 2022;140(6):619–629. doi:10.1182/blood.2022015825