361
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Potential Therapeutic Targets for Luminal Androgen Receptor Breast Cancer: What We Know so Far

ORCID Icon, , , ORCID Icon, &
Pages 235-247 | Received 30 Dec 2022, Accepted 24 Mar 2023, Published online: 07 Apr 2023

References

  • Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5(1):5–23. doi:10.1016/j.molonc.2010.11.003
  • Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752. doi:10.1038/35021093
  • Eliyatkin N, Yalcin E, Zengel B, Aktas S, Vardar E. Molecular classification of breast carcinoma: from traditional, old-fashioned way to a new age, and a new way. J Breast Health. 2015;11(2):59–66. doi:10.5152/tjbh.2015.1669
  • Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–1948. doi:10.1056/NEJMra1001389
  • Lehmann BD, Bauer JA, Chen X, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–2767. doi:10.1172/JCI45014
  • Burstein MD, Tsimelzon A, Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–1698. doi:10.1158/1078-0432.CCR-14-0432
  • Zhao S, Ma D, Xiao Y, et al. Molecular subtyping of triple-negative breast cancers by immunohistochemistry: molecular basis and clinical relevance. Oncologist. 2020;25(10):e1481–e1491. doi:10.1634/theoncologist.2019-0982
  • Gerratana L, Basile D, Buono G, et al. Androgen receptor in triple negative breast cancer: a potential target for the targetless subtype. Cancer Treat Rev. 2018;68:102–110. doi:10.1016/j.ctrv.2018.06.005
  • Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9(2):176–198. doi:10.1158/2159-8290.CD-18-1177
  • Stella S, Vitale SR, Massimino M, et al. Molecular analysis of luminal androgen receptor reveals activated pathways and potential therapeutic targets in breast cancer. Cancer Genomics Proteomics. 2022;19(4):464–476. doi:10.21873/cgp.20333
  • Giovannelli P, Di Donato M, Auricchio F, Castoria G, Migliaccio A. Androgens induce invasiveness of triple negative breast cancer cells through AR/Src/PI3-K complex assembly. Sci Rep. 2019;9(1):4490. doi:10.1038/s41598-019-41016-4
  • Giovannelli P, Di Donato M, Galasso G, Di Zazzo E, Bilancio A, Migliaccio A. The androgen receptor in breast cancer. Front Endocrinol. 2018;9:492. doi:10.3389/fendo.2018.00492
  • Hickey TE, Robinson JL, Carroll JS, Tilley WD. Minireview: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol. 2012;26(8):1252–1267. doi:10.1210/me.2012-1107
  • Barton VN, D’Amato NC, Gordon MA, Christenson JL, Elias A, Richer JK. Androgen receptor biology in triple negative breast cancer: a case for classification as AR+ or quadruple negative disease. Horm Cancer. 2015;6(5–6):206–213. doi:10.1007/s12672-015-0232-3
  • Davey RA, Grossmann M. Androgen receptor structure, function and biology: from bench to bedside. Clin Biochem Rev. 2016;37(1):3–15.
  • Cuenca-Lopez MD, Montero JC, Morales JC, Prat A, Pandiella A, Ocana A. Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling. BMC Cancer. 2014;14:302. doi:10.1186/1471-2407-14-302
  • Garay JP, Karakas B, Abukhdeir AM, et al. The growth response to androgen receptor signaling in ERalpha-negative human breast cells is dependent on p21 and mediated by MAPK activation. Breast Cancer Res. 2012;14(1):R27. doi:10.1186/bcr3112
  • Tarulli GA, Butler LM, Tilley WD, Hickey TE. Bringing androgens up a NOTCH in breast cancer. Endocr Relat Cancer. 2014;21(4):T183–T202. doi:10.1530/ERC-14-0248
  • Ueda T, Bruchovsky N, Sadar MD. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem. 2002;277(9):7076–7085. doi:10.1074/jbc.M108255200
  • Pietri E, Conteduca V, Andreis D, et al. Androgen receptor signaling pathways as a target for breast cancer treatment. Endocr Relat Cancer. 2016;23(10):R485–R498. doi:10.1530/ERC-16-0190
  • Chia KM, Liu J, Francis GD, Naderi A. A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia. 2011;13(2):154–166. doi:10.1593/neo.101324
  • Simoncini T, Genazzani AR. Non-genomic actions of sex steroid hormones. Eur J Endocrinol. 2003;148(3):281–292. doi:10.1530/eje.0.1480281
  • Li J, Al-Azzawi F. Mechanism of androgen receptor action. Maturitas. 2009;63(2):142–148. doi:10.1016/j.maturitas.2009.03.008
  • Anestis A, Karamouzis MV, Dalagiorgou G, Papavassiliou AG. Is androgen receptor targeting an emerging treatment strategy for triple negative breast cancer? Cancer Treat Rev. 2015;41(6):547–553. doi:10.1016/j.ctrv.2015.04.009
  • Rizza P, Barone I, Zito D, et al. Estrogen receptor beta as a novel target of androgen receptor action in breast cancer cell lines. Breast Cancer Res. 2014;16(1):R21. doi:10.1186/bcr3619
  • Dey P, Wang A, Ziegler Y, et al. Estrogen receptor beta 1: a potential therapeutic target for female triple negative breast cancer. Endocrinology. 2022;163(12):12. doi:10.1210/endocr/bqac172
  • Monaco A, Licitra F, Di Gisi M, et al. ERβ in triple-negative breast cancer: emerging concepts and therapeutic possibilities. Endocrines. 2021;2(3):356–365. doi:10.3390/endocrines2030033
  • Naderi A, Hughes-Davies L. A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia. 2008;10(6):542–548. doi:10.1593/neo.08274
  • Naderi A, Chia KM, Liu J. Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13(2):R36. doi:10.1186/bcr2858
  • Park JJ, Irvine RA, Buchanan G, et al. Breast cancer susceptibility gene 1 (BRCAI) is a coactivator of the androgen receptor. Cancer Res. 2000;60(21):5946–5949.
  • Zhang W, Luo J, Yang F, et al. BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1. Sci Rep. 2016;6:22034. doi:10.1038/srep22034
  • Yeh S, Hu YC, Rahman M, et al. Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells. Proc Natl Acad Sci U S A. 2000;97(21):11256–11261. doi:10.1073/pnas.190353897
  • Asghar US, Barr AR, Cutts R, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23(18):5561–5572. doi:10.1158/1078-0432.CCR-17-0369
  • Michmerhuizen AR, Spratt DE, Pierce LJ, Speers CW. ARe we there yet? Understanding androgen receptor signaling in breast cancer. NPJ Breast Cancer. 2020;6:47. doi:10.1038/s41523-020-00190-9
  • Robinson JL, Macarthur S, Ross-Innes CS, et al. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 2011;30(15):3019–3027. doi:10.1038/emboj.2011.216
  • Robinson JL, Carroll JS. FoxA1 is a key mediator of hormonal response in breast and prostate cancer. Front Endocrinol. 2012;3:68. doi:10.3389/fendo.2012.00068
  • Kim S, Moon BI, Lim W, Park S, Cho MS, Sung SH. Expression patterns of GATA3 and the androgen receptor are strongly correlated in patients with triple-negative breast cancer. Hum Pathol. 2016;55:190–195. doi:10.1016/j.humpath.2016.04.013
  • Graham TR, Yacoub R, Taliaferro-Smith L, et al. Reciprocal regulation of ZEB1 and AR in triple negative breast cancer cells. Breast Cancer Res Treat. 2010;123(1):139–147. doi:10.1007/s10549-009-0623-7
  • Garofoli M, Volpicella M, Guida M, Porcelli L, Azzariti A. The role of non-coding RNAs as prognostic factor, predictor of drug response or resistance and pharmacological targets, in the cutaneous squamous cell carcinoma. Cancers. 2020;12(9):2552. doi:10.3390/cancers12092552
  • Ravaioli S, Maltoni R, Pasculli B, et al. Androgen receptor in breast cancer: the “5W” questions. Front Endocrinol. 2022;13:977331. doi:10.3389/fendo.2022.977331
  • Nakano K, Miki Y, Hata S, et al. Identification of androgen-responsive microRNAs and androgen-related genes in breast cancer. Anticancer Res. 2013;33(11):4811–4819.
  • Zhang W, Liu X, Liu S, et al. Androgen receptor/let-7a signaling regulates breast tumor-initiating cells. Oncotarget. 2018;9(3):3690–3703. doi:10.18632/oncotarget.23196
  • Lyu S, Liu H, Liu X, et al. Interrelation of androgen receptor and miR-30a and miR-30a function in ER(-), PR(-), AR(+) MDA-MB-453 breast cancer cells. Oncol Lett. 2017;14(4):4930–4936. doi:10.3892/ol.2017.6781
  • Ahram M, Mustafa E, Zaza R, et al. Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells. Cell Biol Int. 2017;41(12):1345–1355. doi:10.1002/cbin.10841
  • Al-Othman N, Hammad H, Ahram M. Dihydrotestosterone regulates expression of CD44 via miR-328-3p in triple-negative breast cancer cells. Gene. 2018;675:128–135. doi:10.1016/j.gene.2018.06.094
  • Yang F, Shen Y, Zhang W, et al. An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ. 2018;25(12):2209–2220. doi:10.1038/s41418-018-0123-6
  • Bandini E, Fanini F, Vannini I, et al. miR-9-5p as a regulator of the androgen receptor pathway in breast cancer cell lines. Front Cell Dev Biol. 2020;8:579160. doi:10.3389/fcell.2020.579160
  • Doane AS, Danso M, Lal P, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene. 2006;25(28):3994–4008. doi:10.1038/sj.onc.1209415
  • Cochrane DR, Bernales S, Jacobsen BM, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res. 2014;16(1):R7. doi:10.1186/bcr3599
  • Barton VN, D’Amato NC, Gordon MA, et al. Multiple molecular subtypes of triple-negative breast cancer critically rely on androgen receptor and respond to enzalutamide in vivo. Mol Cancer Ther. 2015;14(3):769–778. doi:10.1158/1535-7163.MCT-14-0926
  • Li H, Song G, Zhou Q, et al. Activity of preclinical and phase I clinical trial of a novel androgen receptor antagonist GT0918 in metastatic breast cancer. Breast Cancer Res Treat. 2021;189(3):725–736. doi:10.1007/s10549-021-06345-x
  • Lehmann BD, Bauer JA, Schafer JM, et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16(4):406. doi:10.1186/s13058-014-0406-x
  • Robles AJ, Cai S, Cichewicz RH, Mooberry SL. Selective activity of deguelin identifies therapeutic targets for androgen receptor-positive breast cancer. Breast Cancer Res Treat. 2016;157(3):475–488. doi:10.1007/s10549-016-3841-9
  • Coussy F, Lavigne M, de Koning L, et al. Response to mTOR and PI3K inhibitors in enzalutamide-resistant luminal androgen receptor triple-negative breast cancer patient-derived xenografts. Theranostics. 2020;10(4):1531–1543. doi:10.7150/thno.36182
  • Genta S, Martorana F, Stathis A, Colombo I. Targeting the DNA damage response: PARP inhibitors and new perspectives in the landscape of cancer treatment. Crit Rev Oncol Hematol. 2021;168:103539. doi:10.1016/j.critrevonc.2021.103539
  • Luo J, Jin J, Yang F, et al. The correlation between PARP1 and BRCA1 in AR positive triple-negative breast cancer. Int J Biol Sci. 2016;12(12):1500–1510. doi:10.7150/ijbs.16176
  • Spring LM, Wander SA, Andre F, Moy B, Turner NC, Bardia A. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. Lancet. 2020;395(10226):817–827. doi:10.1016/S0140-6736(20)30165-3
  • Christenson JL, O’Neill KI, Williams MM, et al. Activity of combined androgen receptor antagonism and cell cycle inhibition in androgen receptor positive triple negative breast cancer. Mol Cancer Ther. 2021;20(6):1062–1071. doi:10.1158/1535-7163.MCT-20-0807
  • Qiu P, Guo Q, Yao Q, Chen J, Lin J, Chang S. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer. PLoS One. 2021;16(11):e0254283. doi:10.1371/journal.pone.0254283
  • Li Y, Zhang DY, Ren Q, et al. Regulation of a novel androgen receptor target gene, the cyclin B1 gene, through androgen-dependent E2F family member switching. Mol Cell Biol. 2012;32(13):2454–2466. doi:10.1128/MCB.06663-11
  • Fu LL, Tian M, Li X, et al. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget. 2015;6(8):5501–5516. doi:10.18632/oncotarget.3551
  • Urbanucci A, Barfeld SJ, Kytola V, et al. Androgen receptor deregulation drives bromodomain-mediated chromatin alterations in prostate cancer. Cell Rep. 2017;19(10):2045–2059. doi:10.1016/j.celrep.2017.05.049
  • Park IH, Yang HN, Jeon SY, et al. Anti-tumor activity of BET inhibitors in androgen-receptor-expressing triple-negative breast cancer. Sci Rep. 2019;9(1):13305. doi:10.1038/s41598-019-49366-9
  • Huang M, Chen C, Geng J, et al. Targeting KDM1A attenuates Wnt/beta-catenin signaling pathway to eliminate sorafenib-resistant stem-like cells in hepatocellular carcinoma. Cancer Lett. 2017;398:12–21. doi:10.1016/j.canlet.2017.03.038
  • Maiques-Diaz A, Somervaille TC. LSD1: biologic roles and therapeutic targeting. Epigenomics. 2016;8(8):1103–1116. doi:10.2217/epi-2016-0009
  • Jin Y, Ma D, Gramyk T, et al. Kdm1a promotes SCLC progression by transcriptionally silencing the tumor suppressor rest. Biochem Biophys Res Commun. 2019;515(1):214–221. doi:10.1016/j.bbrc.2019.05.118
  • Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–953. doi:10.1016/j.cell.2004.12.012
  • Wang T, Zhang F, Sun F. ORY-1001, a KDM1A inhibitor, inhibits proliferation, and promotes apoptosis of triple negative breast cancer cells by inactivating androgen receptor. Drug Dev Res. 2022;83(1):208–216. doi:10.1002/ddr.21860
  • Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59. doi:10.1186/s12964-020-0530-4
  • Bareche Y, Buisseret L, Gruosso T, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J Natl Cancer Inst. 2020;112(7):708–719. doi:10.1093/jnci/djz208
  • Kwilas AR, Ardiani A, Gameiro SR, Richards J, Hall AB, Hodge JW. Androgen deprivation therapy sensitizes triple negative breast cancer cells to immune-mediated lysis through androgen receptor independent modulation of osteoprotegerin. Oncotarget. 2016;7(17):23498–23511. doi:10.18632/oncotarget.8274
  • Gucalp A, Tolaney S, Isakoff SJ, et al. Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 2013;19(19):5505–5512. doi:10.1158/1078-0432.CCR-12-3327
  • Bonnefoi H, Grellety T, Tredan O, et al. A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Ann Oncol. 2016;27(5):812–818. doi:10.1093/annonc/mdw067
  • Traina TA, Miller K, Yardley DA, et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J Clin Oncol. 2018;36(9):884–890. doi:10.1200/JCO.2016.71.3495
  • Walsh EM, Gucalp A, Patil S, et al. Adjuvant enzalutamide for the treatment of early-stage androgen-receptor positive, triple-negative breast cancer: a feasibility study. Breast Cancer Res Treat. 2022;195(3):341–351. doi:10.1007/s10549-022-06669-2
  • Jiang H, Ouyang Q, Yin Y, et al. Proxalutamide in patients with AR-positive metastatic breast cancer: results from an open-label multicentre phase Ib study and biomarker analysis. Eur J Cancer. 2022;176:1–12. doi:10.1016/j.ejca.2022.08.025
  • Gucalp A, Danso MA, Elias AD, et al. Phase (Ph) 2 stage 1 clinical activity of seviteronel, a selective CYP17-lyase and androgen receptor (AR) inhibitor, in women with advanced AR+ triple-negative breast cancer (TNBC) or estrogen receptor (ER)+ BC: CLARITY-01. J Clin Oncol. 2017;35(15_suppl):1102. doi:10.1200/JCO.2017.35.15_suppl.1102
  • Yardley D, Peacock N, Young R, et al. Abstract P5-14-04: a Phase 2 study evaluating orteronel, an inhibitor of androgen biosynthesis, in patients with androgen receptor (AR)-expressing metastatic breast cancer: interim analysis. Cancer Res. 2016;76(4_Supplement):P5-14-04-P15-14–04. doi:10.1158/1538-7445.SABCS15-P5-14-04
  • Arnedos M, Goncalves A, Pulido M, et al. 213MO primary endpoint analysis of a randomized phase II of darolutamide or capecitabine in patients with triple-negative androgen receptor-positive advanced breast cancer (UCBG3-06 START trial). Ann Oncol. 2022;33:S635. doi:10.1016/j.annonc.2022.07.252
  • Gucalp A, Boyle LA, Alano T, et al. Phase II trial of bicalutamide in combination with palbociclib for the treatment of androgen receptor (+) metastatic breast cancer. J Clin Oncol. 2020;38(15_suppl):1017. doi:10.1200/JCO.2020.38.15_suppl.1017
  • Lehmann BD, Abramson VG, Sanders ME, et al. TBCRC 032 IB/II multicenter study: molecular insights to AR antagonist and PI3K inhibitor efficacy in patients with AR(+) metastatic triple-negative breast cancer. Clin Cancer Res. 2020;26(9):2111–2123. doi:10.1158/1078-0432.CCR-19-2170
  • Yuan Y, Lee JS, Yost SE, et al. A phase II clinical trial of pembrolizumab and enobosarm in patients with androgen receptor-positive metastatic triple-negative breast cancer. Oncologist. 2021;26(2):99–e217. doi:10.1002/onco.13583
  • Chang L, Ruiz P, Ito T, Sellers WR. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell. 2021;39(4):466–479. doi:10.1016/j.ccell.2020.12.008
  • Jacobs AT, Martinez Castaneda-Cruz D, Rose MM, Connelly L. Targeted therapy for breast cancer: an overview of drug classes and outcomes. Biochem Pharmacol. 2022;204:115209. doi:10.1016/j.bcp.2022.115209
  • Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol. 2022;19(2):91–113. doi:10.1038/s41571-021-00565-2
  • Aurilio G, Cimadamore A, Mazzucchelli R, et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells. 2020;9(12):12. doi:10.3390/cells9122653
  • You CP, Tsoi H, Man EPS, Leung MH, Khoo US. Modulating the activity of androgen receptor for treating breast cancer. Int J Mol Sci. 2022;23(23):15342. doi:10.3390/ijms232315342
  • Antonarakis ES, Lu C, Wang H, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–1038. doi:10.1056/NEJMoa1315815
  • Ferguson DC, Mata DA, Tay TK, et al. Androgen receptor splice variant-7 in breast cancer: clinical and pathologic correlations. Mod Pathol. 2022;35(3):396–402. doi:10.1038/s41379-021-00924-5